
reverxii.tex

Playing Reversi in TEX

Bruno Le Floch

December 28, 2011

Abstract

reverxii.tex is a 938-byte long TEX program which lets you play
Reversi against your favorite typestting engine. To play, run plain TEX,
on the command line, in dvi-mode, on the file reverxii.tex. In most
distributions, this should mean running tex reverxii.tex in a terminal.
To produce the documentation, run LATEX on the same file, with any
engine (e.g., pdflatex reverxii.tex).

1 The code

Line breaks can be removed, and the stripped down code takes 938 characters.

\vsize5cm\hsize3cm\newlinechar‘*\def~#1{\catcode‘#113~}

~IJKLMNOPQRSTUVWXYZjqz@.[|](/+^’";:?,_)!*{ 13\def~#1#2{\let#1#2~}

\def+{\count1}+1=2}*\cr[\ifnum(\ifcase|\or/\else]\fiN\number@\advance

X\expandafter!\global?\message~\def.#1{@+1 1\countdef#1+1.}

.IJKLPQRSTUVWYZ.-1P1T2+44P+55P+45T+54T

~j{[0<Q[9>Q[0<J[9>J^/.]/.]/.]/.]}

~^{+NQNJ}~:#1{#11#12#13#14#15#16#17#18}~M#1{?{#1}#1}

~_#1#2{M#2:{\B#1}&M#2&M{*}}~\B#1#2{&M{(+#1#2 |-|0]}}

~q{?{Row and column? e.g. E6*}\read.to\EX\D\meaning\E ;}

~\D#1->#2#3#4;{Q‘#2@Q-‘@J‘#3@J-‘0)(V?{Invalid move #2#3.}q]}

~){V0 (jS1z1z0z.S0z1z.S.z1z0z.]}~;{@R(P|-]}~z#1{{K#1Z1{Y1,}(Z,]}}

~,{@QS@JK[j=T(Y!^P!;2]O,/[j=P!VV(I(Y/!Z0]]]]}~\A#1{Q#1:\C}

~\C#1{J#1)[0<VO[V>WWVUQLJ]]}~"#1{(#1|0|1|2|2|2|2|1|0]}

~O{Z"Q\multiplyZ3@Z"J@V(Z9|1|6|1|1|2|6|2|4] }~’{M :{&M}&M{*}}

~~{PXTXTNP\halign{&## *M{*}’_1A_2B_3C_4D_5E_6F_7G_8H’}\vfil\break

I1W(W./0] :\AI0 [0<W[1=PQUJL/q])^P;1][.=W?{(RTie/ Player [0>R-/0]

wins by N[0>R-]R].}X\end]~}~

To play a two-player game, change 1=P to 0=P near the end: this changes
the computer player from 0 to 1, hence disabling it.

1

2 Explanation

2.1 Some comments

The name reverxii.tex is of course a reference to the infamous xii.tex, also
on CTAN, which typesets the lyrics of the Twelve days of Christmas using code
that very few can understand. In my case, I aimed for the shortest possible
code, rather than the most obfuscated. In particular, I did not assign weird
catcodes other than making most characters active.

Since I was aiming for short code, the text presented to the player is concise,
but hopefully enough to leave the game understandable and usable. Despite
aiming for short code, I thought it would be neat to typeset a record of the
game as it goes: after all, TEX is a typesetting program. This used up around
38 characters, putting me above the 900 character line.

One technique used to make the code shorter is to rename any primitive
used more than once into a single active character. Also, counters holding the
information about the board are accessed directly by number.

A careful reader would notice that changing one of the remaining one-
character control sequences to active characters ($ is still unused) would gain
one character. I didn’t do it, because it messes up the code-highlighting of
my editor :). Of course, I chose the control sequences which are not active
characters to be those appearing the least, only twice each.

2.1.1 On with the code!

First set up the page dimensions. This would not be enough for pdf output.

\vsize5cm

\hsize3cm

Since plain TEX does not provide the \typeout command, we are using
\message, hence need to setup a new line character. It is arbitrarily chosen to
be *, which will be made active and \let to \cr.

\newlinechar‘*

Then a first loop to make many characters active. The loop ends when
reaching the trailing brace group: there we make spaces active, then redefine ~

for the next loop. We still have an annoying 13~ in the input stream. Introduce
a short-hand for count registers whose number starts with 1, then remove 13 by
setting \count11 to 213 (this counter is used for allocation later on). The next
loop is triggered by the ~ which we left.

\def~#1{\catcode‘#113~}

~IJKLMNOPQRSTUVWXYZjqz@.[|](/+^’";:?,_)!*

{ 13\def~#1#2{\let#1#2~}\def+{\count1}+1=2}

2

At this stage, ~ is defined to take two arguments, \let the first to the second,
and repeat. As announced * becomes \cr, so that it will be a new line both
in messages and in alignments. We try to keep a relatively consistent naming
scheme: opening conditionals are left delimiters, \or and \else are middle
delimiters, and \fi is a right bracket. Other primitives which are used a lot are
also given short names. The loop ends by redefining ~ to \def.

*\cr

[\ifnum

(\ifcase

|\or

/\else

]\fi

N\number

@\advance

X\expandafter

!\global

?\message

~\def

It is time to allocate counters. Unfortunately, \newcount is \outer, so it
is unpractical to use. We have set +1, aka. \count11 to 213, and will allocate
counters starting from that number upwards. Repeatedly advance +1 by 1 and
define the next character to be the counter number +1, then repeat. As always,
the loop is interrupted by making it redefine the looping macro . to be a counter.
We use the trailing dot to assign it the value −1, then assign a couple of counters:
starting player, other player, and the initial position: the squares in rows and
columns 4 and 5 are initially filled in a cross pattern.

.#1{@+1 1\countdef#1+1.}.IJKLPQRSTUVWYZ.-1P1T2+44P+55P+45T+54T

Let us summarize which counters are used where:

P is the current player (1 for - or 2 for 0);

T is the other player;

Q is the row number;

J is the column number;

S is the step size in the row direction;

K is the step size in the column direction;

R is the score difference, positive when 0 is winning;

V is used when computing the value of placing a piece at the position (Q,J);

3

W is the value of the best possible move according to the AI, also used to
end the game if neither player can move;

U is the row number of the best move;

L is the column number of the best move;

Y is a boolean, true (0) most of the time, it has to do with when we flip or
not, but I don’t understand it now, help welcome;

Z is a temporary counter, used locally to compute how much a given cell
matters (i.e. corners are important), and used globally as a boolean to
indicate whether to flip pieces or not.

The board is stored in counters 1〈row〉〈column〉. An empty square is has the
value 0, a square for player - has value 1, and player 0 corresponds to the value
2. The macro j retrieves that value, assuming that the row and column numbers
are stored as Q and J, and returns ., that is, −1, if outside the board. Recall
that [is \ifnum, / is \else, and] is \fi. When Q and J are within bounds,
the value is retrieved by ^ as \count1〈row〉〈column〉. Note that j and ^ are
only safe to use on the left-hand side of an \ifnum test (because of expansion
issues), and that ^ can be used on the left-hand side of an assignment.

~j{[0<Q[9>Q[0<J[9>J^/.]/.]/.]/.]}

~^{+NQNJ}

We often need to loop over numbers from 1 to 8; here is a macro.

~:#1{#11#12#13#14#15#16#17#18}

The macros to print the board, both to the dvi and to the console. M spews
its argument as a \message (?), and directly typeset. This is used rather directly
to print the first and last lines (’), which are simply alignment cells containing
each number from 1 to 8, with some care given to spaces and new lines. The
_ macro receives a digit and the corresponding capital letter as arguments, and
outputs that row of the board. First place the letter on the left of the board,
then loop from 1 to 8, typesetting and \messageing a space, - or 0, depending
on the value of the relevant count register. Note the two spaces in the definition:
the first ends the counter’s number, the second is typeset (in plain TEX, active
spaces expand to a normal space).

~M#1{?{#1}#1}

~’{M :{&M}&M{*}}

~_#1#2{M#2:{\B#1}&M#2&M{*}}

~\B#1#2{&M{(+#1#2 |-|0]}}

4

The input is done by q, which queries the user until they give a correct
input, so that Q and J are in the range [1, 8]. Prompt the user with a small
\message, giving an example of what move he could do (only true at the start,
but the hope is that the player will understand what the input format is). The
code that follows is similar to LATEX 2ε’s \@onelevel@sanitize. We extract
the two first characters from the the \meaning of the user’s input (remember, X
is \expandafter), as #2 and #3 of \D. Grab the character code of each, relative
to the characters @ (row) or 0 (column). The closing parenthesis is where most
of the work is done. It sets V to the value of placing a piece in the cell (Q, J), zero
if the move does not flip any of the opponent’s pieces, or if the cell is outside the
board. After performing that calculation, if V is zero, the move was not valid,
and we query the user again.

~q{?{Row and column? e.g. E6*}\read.to\EX\D\meaning\E ;}

~\D#1->#2#3#4;{Q‘#2@Q-‘@J‘#3@J-‘0)(V?{Invalid move #2#3.}q]}

So. . . how do we compute the “value” of a move? It is automatically invalid
if j does not return 0: either the cell is occupied, or it is outside the board.
Then for each of the 8 directions around the cell, we count the number of pieces
that are flipped in that direction. The direction is stored as two counters, S and
K, each ±1 or 0. We call , a first time to test whether flipping should happen
in that direction, and, if it is (as indicated by the global value of Z), call it
again to actually flip. The call to , must happen within a group, because it
directly changes the row and column numbers Q and J, following which cell is
being queried.

~){V0 (jS1z1z0z.S0z1z.S.z1z0z.]}

~z#1{{K#1Z1{Y1,}(Z,]}}

The macro , is recursive. At each step, move (Q, J) in the direction (S, K).
Then, if that cell (j) contains a piece belonging to the other player (T), do some
stuff (Y!^P!;2]O and repeat. What is it that we do? Well, if the condition Y

is met (I don’t remember how that works), we set the current cell to belong to
the player, globally, and change the score difference by 2 (see ;), also globally.
Then, we compute with O the value corresponding to the cell that we might be
flipping (see O).

Otherwise (/), if the cell (j) contains a piece from the current player (P), it
means we have reached the end of a run of the form 〈initialcell〉 〈opponent ′spieces〉
〈ownpiece〉, hence the 〈opponent ′spieces〉 should count as flipped if we place our
piece in the 〈initialcell〉. Until there, all changes to V were local, returning to
the old value at the end of the group that , is contained in. Since the run
in that direction was successful, we escape the value of V from the group with
\global V=V. Under some conditions, we set the boolean Z to true, globally
(!Z0), which triggers a second call to , with different setting, and actually flips
the opponent’s pieces.

5

~,{@QS@JK[j=T(Y!^P!;2]O,/[j=P!VV(I(Y/!Z0]]]]}

I moved those O and " guys a little bit in this explanation, but not in the
original implemenation, because it is hard to sync. We assign weights to each
of the 64 cells:

9 1 6 6 6 6 1 9
1 1 2 2 2 2 1 9
6 2 4 4 4 4 2 6
6 2 4 4 4 4 2 6
6 2 4 4 4 4 2 6
6 2 4 4 4 4 2 6
1 1 2 2 2 2 1 9
9 1 6 6 6 6 1 9

All weights are positive, so that every move which flips a piece ends up with a
positive overall value. The AI would be better if the places next to corners had
a negative weight, but I would have too much code to rewrite for that to work.
We really have three types of rows and three types of columns. Converting from
Q or J is done by ", then we assemble the two as a number in the range [0, 8],
and use another \ifcase construction to produce the weights.

~O{Z"Q\multiplyZ3@Z"J@V(Z9|1|6|1|1|2|6|2|4] }

~"#1{(#1|0|1|2|2|2|2|1|0]}

The counter R keeps track of the score difference, and is updated with ;2

(when flipping a piece) or ;1 (when adding a piece). The counter R should be
\advanced (@) by a positive amount when the current player P is player 0, and
a negative amount for player -.

~;{@R(P|-]}

After printing the board, we go through every cell and find the one with
the highest value. The macro \A, does one row, hence \:\A does all the rows.
Store the argument as the row number Q, then loop over columns. After setting
the column number J to its argument, \C calls), which as explained above
computes the value of placing a piece there, throws away that case if it flips
nothing, otherwise also counts the weight of the current cell. Then update the
best value W and the best row U and column L if the new V is larger than W.

~\A#1{Q#1:\C}

~\C#1{J#1)[0<VO[V>WWVUQLJ]]}

We won’t need ~ as \def anymore, so we reuse it as the main command.

6

• First exchange the players: set P equal to T, but first expand the value of
P after T to set that as well.

• Secondly, open an alignment, with a repeating preamble adding a space
at its end. Then message a new-line (we should be using ? rather than M

here, I think) to keep a clean output. Afterwards, print the top line with
’, the eight lines of the bulk with _, and the bottom line, which happens
to end with ?{*}*, i.e., ends with \cr: we can thus close the alignment,
and cause TEX to output the page.

• After printing, it is time to check whether there is a move or not. We
don’t want to flip pieces at this stage, hence set the boolean I to false (1).
And we reset the best value to 0, unless it was already 0 (which means
that the previous player had no available move), in which case we set it
to −1. Then loop over rows, finding the best value (see \A). Reset the
boolean I to be true.

• If a move was found in the previous step (W > 0), either use it if the player
is the AI, or query the user. The various booleans are set up in such a
way as to do the flipping, so calling) does it. Then also put a player’s
piece in the current cell ^, and increase the score difference by 1.

• Finally, if neither player could move, declare the game ended, give the
score, and \end the run. Otherwise, repeat.

Of course, after defining ~, we call it. Let’s play!

~~{

PXTXTNP

\halign{&## *M{*}’_1A_2B_3C_4D_5E_6F_7G_8H’}\vfil\break

I1 W(W./0] :\AI0

[0<W

[1=PQUJL/q]

)

^P;1

]

[.=W

?{(RTie/ Player [0>R-/0] wins by N[0>R-]R].}

X\end

]

~

}

~

7

