
Typesetting multilingual documents with

ANTOMEGA ∗

Alexej Kryukov

May 8, 2005

Abstract

Antomega is a language support package for Lambda, based on the orig-
inal omega.sty file. However, it provides some additional functionality.

1 Introduction

Moving from LATEX to Ω is always difficult for an average user, since the Ω dis-
tribution doesn’t include any language support package which could be used as
a Babel replacement. The omega.sty file, version of 1999/06/01, was released
by the Ω developers as a first attempt to make something like ‘Omega-Babel’,
but, unfortunately, this work was not finished. Moreover, more recent versions of
omega.sty are suitable only for testing some right-to-left languages, but not for
regular work. So I prepared my own package, based on the original omega.sty,
which fixes some bugs and provides some additional functionality.

2 Installation instructions

First, download and install the Ω binaries or ensure that your TEX installation
already includes them. Unpack the archive file with ANTOMEGA and move all
files to the appropriate directories (for example, everything in omega/lambda/ to
$$texmf/omega/lambda, everything in omega/ocp/ to $$texmf/omega/ocp, and
so on. If you already have a file named language.dat in $$texmf/omega/lambda/base,
replace it with the provided file (called language.dat.sample) in case you want to
get correct hyphenation for Russian and/or Greek.

Note that ANTOMEGA still needs some files from the original Ω distribution.
The most important file is ut1omlgc.fd. Unfortunately, this file was not included
into some recent Ω distributions. I can neither include it into my package as is
(this might cause name clashes) nor rename it (since I can’t rename the default
font and the default encoding vector used in Ω). So in case you haven’t this file
already installed you have to install it separately. Either take it from an older
TEX distribution or from the Ω CVS tree.

There are also some additional translation processes (useful mainly for type-
setting polytonic (classical) Greek), which you may want to take from old Ω.

∗This file has version number 0.8, last revised on 7 May 2005.

1

Of course, after installing new files you have to update the TEX file names
database. On teTeX or fpTeX systems this is performed with texconfig rehash

or mktexlsr commands. On MikTeX you can do the same via a menu item. Re-
fer yourself to a special section (8) of this manual, in case you are interested in
installing and configuring ANTOMEGA under Scientific Word/Scientific Work-
place.

2.1 Deprecated files

If you are upgrading from an older version of ANTOMEGA, you can safely delete
the following deprecated files:

• In $$TEXMF/omega/unidata:

– uni0300.def (now called uni0370.def;

– grahyph.tex and grmhyph.tex (replaced with ograhyph.tex and
ogrmhyph.tex correspondingly according to the naming convention
proposed by Dimitrios Filippou);

• In $$TEXMF/omega/hyphen: greek2uni.tex and greek2omega.tex (no
longer needed);

• In $$TEXMF/omega/otp/antomega: latin2punct.otp and cyr2punct.otp

(replaced with files tex2punct.otp, babel2punct.otp and babel2ru.otp);

• In $$TEXMF/omega/ocp/antomega: latin2punct.ocp and cyr2punct.ocp

(replaced with files tex2punct.ocp, babel2punct.ocp and babel2ru.ocp).

2.2 Updating Lambda format

With older versions of ANTOMEGA you could do without updating Lambda for-
mat (at least if you work only with Latin-based languages), but now this operation
is strongly recommended for the following reasons. As you probably know, the
core of the LATEX system consists of latex.ltx and some other files which should
be loaded into format. Since there are no special versions of those files for Ω, the
same files are used also for Lambda format.

Of course, files designed for LATEX not always work well for Ω. For example,
in order to get correct hyphenation for a text in a specific language, we have to
set \catcode (which should be equal to 11 or 12) and \lccode for all characters
used in that language. For correct conversion to uppercase we need also \uccode

values. In standard LATEX these values are defined for all 256 characters of the
encoding table, but with Ω we need similar definitions for a wider range of Unicode
characters, and it would be nice to have these definitions loaded into format.
Some people achieve this effect putting tables of such codes together with their
hyphenation patterns.

However, this approach causes some problems. First of all, it is very incon-
venient to set \catcode, \lccode and \uccode with primitive commands for
each letter from a large amount of characters. Antomega defines some commands
(namely \makeletter, \makeucletter, \makelcletter and \makesameletter),
allowing to simplify this process. It also provides definition tables for some Uni-
code ranges, written using these commands. However, in order to load these tables
into the format the commands they use should be already known to iniomega.

2

There is another problem, even more important. The file responsible for load-
ing hyphenation patterns is called hyphen.cfg. This file is part of the babel

package, but some language-specific formats like cslatex, platex etc. include their
own versions of hyphen.cfg. Note that those versions are mainly incompatible
with ANTOMEGA. The official Ω distribution also included its own simplified
version of hyphen.cfg, but this file was removed from the most recent versions.
That’s why original babel’s version of the file is also often loaded into Lambda
format.

This hyphen.cfg is mainly compatible with Ω, although it defines a lot of
specific commands not needed if we are not planning to use Babel itself. However,
in last versions it has the following feature: hyphenation patterns are loaded
inside a TEX group. This means that hyphenation rules itself will be saved, but
character codes loaded together with them will be forgotten immediately after
processing hyphenation rules. That’s correct, because character codes required
by specific hyphenation patterns may not match codes normally used by LATEX.
For example, Russian hyphenation patterns usually have the koi8 encoding, which
is not directly used by LATEX. So we need a specific table of codes in order to
reencode these patterns into an internal font encoding supported by TEX. Once
reencoding is performed, these character codes are no longer needed.

However, this means that hyphenation patterns is an incorrect place to store
character codes for Unicode symbols, because it is very possible that our settings
will take no effect. And even if they are saved (in case we have old Omega’s
hyphen.cfg installed) the result may be rather unexpected, because Ω has no way
to determine which codes are necessary only for processing specific hyphenation
patterns, and which should really be stored for further use.

That’s why ANTOMEGA now includes its own version of hyphen.cfg and
special file antomega.cfgwhich contains references to tables of character codes for
all supported Unicode ranges. This version of hyphen.cfg first defines commands
\makeletter, \makelcletter, \makeucletter and \makesameletter. After that
it loads antomega.cfg. So if you created a custom table of character codes for
your script, you may load it via antomega.cfg instead of including it into your
hyphenation patterns. Of course you can also prevent codes for a specific Unicode
range from loading into your format. For example, if you never use polytonic
Greek, comment out the following line in antomega.cfg:

\input{uni1f00.def}

Only after loading character codes into format, hyphenation patterns are pro-
cessed. As well as in Babel, this procession is done inside a group, and so all
character codes defined here should be used only for converting your patterns into
another encoding.

Note that, while old Omega’s hyphen.cfg resides in $TEXMF/omega/lambda/config,
ANTOMEGA installes its version of the file into $TEXMF/omega/lambda/antomega.
This prevents name clashes, but, in case you have old hyphen.cfg installed, you
have to remove it manually to ensure that the correct version will be found and
loaded by iniomega. Only after that you may rebuild the lambda format file. On
teTeX or fpTeX systems you have to run

fmtutil --byfmt lambda

3

See section 8 for information on doing that with TrueTEX/ Scientific Word
systems.

It is easy to test if you have the correct hyphen.cfg version loaded into your
format: just take a look at any .log file produced by lambda. In case every-
thing is correct it should contain the following text at the beginning: “Antomega
and hyphenation patters for. . . loaded”. Now you should be able to typeset you
documents with ANTOMEGA.

3 Loading ANTOMEGA

One of the main advantages of omega.sty was using different commands for set-
ting the main language of the document and for loading additional languages.
ANTOMEGA preserves this feature, using the same \background and \load com-
mands. So if you want to prepare an English document including some Greek text,
you can do it by the same way as with omega.sty, for example:

\usepackage{antomega}

\background{english}

\load{greek}

However, omega.sty needs two different files for each language: first of them
(with the *.bgd extension) is used by the \background command, and second (with
the *.lay extension) by the \load command. Of course, these two files usually
have very similar code. ANTOMEGA fixes this problem: both \background and
\load commands load the same language definition file with the .ldf extension,
but process it in a different way.

4 Typesetting in different languages

omega.sty supported only a limited set of languages, which included usenglish,
french and greek. ANTOMEGA supports these languages too, but separate
support for usenglish is no longer available. Instead you can load english with
options dialect=british or dialect=american, for example:

\background[dialect=american]{english}

I added support files for Russian, and later also for German, Polish and Lat-
vian.

Generally speaking, it is not difficult to provide support for a new language,
since language definition files are quite independent from the core package, and so
you can write a file with definitions for your language without changing anything
in antomega.sty, using the existing .ldf files as an example.

In the original omega package we could use for switching to another language
either an environment with the same name as a name of your language, or (for
small pieces of text) the \local<$language> macro, there <$language> is your
language name. These commands had to be defined in the language definition
file. For example, usenglish.bgd defined the usenglish environment and the
\localusenglish command.

4

These commands are still supported in ANTOMEGA. However, beginning
from the version 0.6 ANTOMEGA provides new language switching commands,
compatible with the Babel package. So you can use the \selectlanguage and
\foreignlanguage macros and the otherlanguage environment exactly as you
did with Babel. This means that your old documents may be transferred to Ω
with minimal changes.

5 Loading languages with options

As well as the original omega.sty file, ANTOMEGA requires the keyval pack-
age. So all commands used for loading languages may be executed with different
parameters, which may take different values. Each language has its own set of
such parameters. However, some options are suitable for all supported languages.
The most important of them are input and output parameters, which replace the
inputenc and fontenc packages, used in standard LATEX.

Beginning from ANTOMEGA v. 0.7 the same keyval syntax is also supported
for options of the antomega package itself.

5.1 The “input” parameter

Of course, this parameter is language-specific. However, there are two values,
which are always supported: utf-8 and ucs-2. The later really means “no con-
version”, since ucs-2 is the native format for Ω. Since these two encodings are
suitable for most languages, they may be specified in options of the ANTOMEGA
package, for example:

\usepackage[input=utf-8]{antomega}

The \load and \background commands also support this option, but they
may additionally accept other values for it, depending from the language you
want to load. For example, if you want to type an English document with some
international symbols encoded in iso-8859-1, you may put the following line into
your LATEX preamble:

\background[input=iso-8859-1]{english}

5.2 The “output” parameter

For this parameter you can use one of the following values: unicode, omega and
tex. unicode is used by default. Note that the omlgc font, distributed with Ω,
is not fully compatible with Unicode. For example, it has a specific encoding for
Latin ligatures and general punctuation. So you have to set output=omega if you
want to use this font, and output=unicode if you have another font, more strictly
conforming the Unicode standard. You my want to set also output=tex if you
prefer using 8-bit fonts in standard TEX encodings (T1 for Western languages,
T2A for Russian, LGR for Greek).

For example, if you want to typeset your English text with the standard EC
fonts, but haven’t any corresponding font for Greek, you may use the following
preamble:

5

\documentclass{article}

\usepackage{antomega}

\background[output=tex]{english}

\load[output=omega]{greek}

5.3 The “shorthands” parameter

Since ANTOMEGA tries to completely reproduce the functionality of the Babel
package, it also supports combinations with the " character (shorthands) which
have a special meaning in Babel. Note that ANTOMEGA always uses translation
processes to emulate Babel’s behavior, and so it never really makes " an active
character. The set of supported shorthands differs from language to language,
but there is a minimal set available by default. For example, you may use "<

and "> for guillemots. You may turn off support for Babel shorthands by setting
‘shorthands=off’, and, of course, you may explicitly enable it (‘shortahnds=on’).
Currently this parameter is supported for all languages except Greek.

6 Translation processes

Since the last Ω versions are suitable only for testing purposes, they don’t include
many useful files, originally provided by J. Plaice ang Y. Haralambous. Partic-
ularly some Ω translation processes were removed, and some are incorrect (e. g.
don’t correspond to the omlgc font). That’s why antomega provides its own set
of ocp and otp files, which makes it rather independent from Ω’s texmf part.

For conversion to different encodings I added some new .otp and .ocp files,
which (I hope) work correctly. Beginning from v. 0.6 ANTOMEGA includes
improved translation processes for conversion from some standard iso-8859 and
windows-125* codepages to Unicode. However, some original .ocp files are still
necessary for antomega to work. There also some rarely used (but still supported
in antomega) files, not present neither in antomega nor in the most recent Ω
distributions.

7 Selecting fonts with ANTOMEGA

Of course, it is not enough to set an input encoding for your language. You
will need also a correct font matching your encoding. With ANTOMEGA you
can select a font separately for each script you use. For example, it defines new
commands \westernrm, \westernsf and \westerntt. So, if you want to use
Computer Modern for English but prefer to keep standard omlgc for Greek, simply
put the following line in your preamble:

\renewcommand{\westernrm}{cmr}

In ANTOMEGA’s language support files some similar commands for other
scripts are defined. For example, omega-russian.ldf introduces \russianrm,
and omega-latvian.ldf — \balticrm. Note that there is no need to define
specific commands for Central European languages, because not only Unicode,
but even T1 covers both Western and Central European character sets.

6

Of course, you can write your own special packages to make selecting a new
font a bit more easy. You can even use standard font selecting packages, but, in
this case, you must load them after ANTOMEGA itself and before any language-
specific commands. For example:

\usepackage{antomega}

\usepackage{palatino}

\background{english}

8 Using ANTOMEGA with MacKichan software

products

Generally speaking, adapting MacKichan software products (like Scientific Word
or Scientific Workplace) for non-Latin languages represents a not so trivial task.
The problem is, that their shell (very powerful by itself) knows nothing about
various input encodings, supported by LATEX, and so it can’t take advantage of
multilingual capabilities, provided by Babel. Instead, it represents any national
characters, typed by user, in the form \U{<hexadecimal Unicode index>}. This
representation is hardly legible for standard LATEX, because it is Unicode-based.
That’s why Ω is traditionally used for preparing multilingual documents with
Scientific Word or Scientific Workplace.

So, adapting ANTOMEGA (which is already distributed together with these
software packages) to MacKichan shell is a very natural solution for those who
want to get their text correctly typeset according to typographic rules used in their
native languages. Preparing your Scientific products to use ANTOMEGA may be
divided into two main stages: configuring your TrueTEX installation (which lies
in the background of Scientific Word/Scientific Workplace) and configuring the
graphical front-end itself.

8.1 Configuring TrueTEX

First, ensure you have ANTOMEGA v. 0.8 or above. If necessary, download the
latest version from CTAN and copy the contents of all directories available in the
downloaded package into the corresponding directories found in TCITeX\Omega\.

Second, locate the file TCITeX\Omega\Lambda\base\languages.dat.sample

and rename it to languages.dat. Edit this file to enable hyphenation patterns
for your language.

Now you have to rebuild the Lambda format. This operation is mandatory,
because all default format files supplied with Scientific products are built without
multilingual extensions provided by Babel, so that using ANTOMEGA with your
default lambda.oft just will cause an error. This is also probably the hardest part,
because TrueTEX, unlike MikTEX or fpTEX, provides no special tools allowing to
call iniomega with desired parameters. However, to simplify this task, you can
use the following batch script (call it, say, runinilambda.bat):

echo off

setlocal

set TEXMF=C:\sw50\TCITeX

set TEXINPUTS=.;%TEXMF%/{omega,tex}//

7

%TEXMF%\web2c\iniomega %TEXMF%\omega\lambda\config\lambda.ini

endlocal

Note that you can run this script from any location, but the resulting
lambda.oft file must be placed into your TCITeX\web2c\ directory.

8.2 Configuring the Scientific Word / Scientific Workplace
shell

When you have done with updating Lambda format, you can start Scientific Word
and create a new document (or load an existing one). To make its processing with
Lambda possible, you should do the following:

• From the main menu bar, select ‘Typeset’—‘Expert Settings’. The dialog
box with several tabs will appear, where you should select the ‘DVI Format
Settings’ page, and then the ‘TeX Live Lambda’ entry from the drop-down
box.

• Go to the ‘Typeset’—‘Options and packages’ menu. Ensure that sw2unicode,
swtimes and fontenc are not in the list of loaded packages. These pack-
ages are not needed, since their functuionality is completely incorporated by
ANTOMEGA.

• From the same dialog box, click the ‘Go native’ button. A dialog box with a
multi-line input field will appear. Add the following line to that input field:

[input=sw,ffi=ligatures]{antomega}

Note that the ffi=ligatures option is mandatory, since Times New Roman
(the only Unicode font which is supported in the Scientific Word/Scientific
Workplace distribution by default) hasn’t some latin ligatures at the places
ANTOMEGA expects to find them, so that enabling the corresponding
translation process will result in missing glyphs in the output. Unfortu-
nately, the default ofm files for Times New Roman also contain no informa-
tion about ligature substitution, so that ffi=ligatures practically means
‘no ligatures at all’ in this case.

• Go to ‘Typeset’—‘Preamble’ and input any number of \background and
\load commands for the languages you are planning to use.

Now you should be able to compile your document with Lambda.

9 The ANTOMEGA code

9.1 Handling identification codes for our files

Unlike in Babel, no tests if \ProvidesFile is already defined. Since LATEX 2ε was
released in 1994, and the Ω project started also in 1994, probably nobody will use
Ω with the 2.09 format.

8

We save the original definition of \ProvidesFile in \ant@tempa and restore\ProvidesFile

it after we have stored the version of the file in \toks8.

1 \let\ant@tempa\ProvidesFile

2 \def\ProvidesFile#1[#2 #3 #4]{%

3 \toks8{Antomega <#3> and hyphenation patterns for }%

4 \ant@tempa#1[#2 #3 #4]%

5 \let\ProvidesFile\ant@tempa}

As an alternative for \ProvidesFile we define \ProvidesLanguage here to\ProvidesLanguage

be used in the language definition files.

6 \def\ProvidesLanguage#1{%

7 \begingroup

8 \catcode‘\ 10 %

9 \@makeother\/%

10 \@ifnextchar[%]

11 {\@provideslanguage{#1}}{\@provideslanguage{#1}[]}}

12 \def\@provideslanguage#1[#2]{%

13 \wlog{Language: #1 #2}%

14 \expandafter\xdef\csname ver@#1.ldf\endcsname{#2}%

15 \endgroup}

16 \ProvidesFile{hyphen.cfg}

17 [2005/05/07 v0.8

18 Taken from Babel language switching mechanism

19 and modified for Antomega]

9.2 Handling ΩCP files

The macro \LoadOCPByName takes two arguments: an OCP file name (without\LoadOCPByName

extension) and an Ω command which will be used for loading this file. If the
referenced .ocp file doesn’t exist in user’s system, id.ocp will be used instead. So
it is possible to proceed with document processing, even if some .ocp files were
not found.

20 \def\LoadOCPByName#1#2{\IfFileExists{#2.ocp}{\ocp#1=#2}{

21 \PackageWarning{antomega}{#2.ocp not found.

22 Identity will be used instead.}{}

23 \ocp#1=id}}

Now we load some commonly used translation processes, using the macro
\LoadOCPByName.

24 \ocp\IdOCP=id

25 \LoadOCPByName{\BasicIsoUni}{uniutf2uni}

26 \LoadOCPByName{\BasicWinUni}{uniutf2uni}

27 \LoadOCPByName{\BasicUtfUni}{uniutf2uni}

28 \LoadOCPByName{\BasicTexUni}{tex2punct}

29 \LoadOCPByName{\BasicBabelUni}{babel2punct}

30 \LoadOCPByName{\BasicAccentsUni}{uni2accents}

31 \LoadOCPByName{\UniToOmega}{uni2omega}

32 \LoadOCPByName{\Oldstyle}{oldstyle}

33 \LoadOCPByName{\LatinUniToTex}{uni2t1}

uni2lig.ocp is used for setting up Latin ligatures. However, the standard TEX
ligature mechanism should be a better choice, since using OCP for combinations
like ‘fi’ or ‘fl’ may break hyphenation. So I provided a special ffi option which

9

may be set either to ‘ocp’ or to ‘ligatures’. Setting it to ‘ligatures’ simply prevents
the translation process from loading. Note that uni2lig.ocp is designed for pure
Unicode fonts and it is never used, if output is set to ‘omega’. In this case you
can’t turn off processing ligatures via OCP, since the omlgc font doesn’t contain
any ligatures at all.

34 \def\opt@ocp{ocp}

35 \def\opt@ligatures{ligatures}

36 \define@key{antomega}{ffi}[ocp]{%

37 \def\@tmpa{#1}

38 \ifx\@tmpa\opt@ocp%

39 \LoadOCPByName{\LatinUniToLig}{uni2lig}

40 \else\ifx\@tmpa\opt@ligatures%

41 \typeout{Antomega package option: ffi=ligatures}

42 \LoadOCPByName{\LatinUniToLig}{id}

43 \fi\fi

44 }

The following option is deprecated and preserved for backwards compatibility
only. Use ‘ffi=ligatures’ instead.

45 \DeclareOption{noffi}{\setkeys{antomega}{ffi=ligatures}}

By default we use OCP for Latin ligatures in order to prevent MikTeX crashes.

46 \setkeys{antomega}{ffi=ocp}

Now we can define some standard OCP lists, useful generally for languages
with Latin-based scripts.

This OCP list loads the default translation process for standard TeX ligatures\BasicTexOCP

and punctuation characters.

47 \ocplist\BasicTexOCP=

48 \addbeforeocplist 1750 \BasicTexUni

49 \nullocplist

This OCP list loads the default translation process for Babel-like shorthands.\BasicBabelOCP

If you don’t like them, set ‘shorthands=off’ for your language.

50 \ocplist\BasicBabelOCP=

51 \addbeforeocplist 2000 \BasicBabelUni

52 \nullocplist

This OCP list converts Unicode combining accents to TEX-styled \accent\BasicAccentsOCP

commands.

53 \ocplist\BasicAccentsOCP=

54 \addbeforeocplist 2250 \BasicAccentsUni

55 \nullocplist

This is ANTOMEGA’s default OCP list. It doesn’t translate text to any other\BasicInputUcsOCP

character set (so, sctually, does nothing).

56 \ocplist\BasicInputUcsOCP=

57 \addbeforeocplist 500 \IdOCP

58 \nullocplist

This OCP list should be used for utf-8 encoded texts.\BasicInputUtfOCP

59 \ocplist\BasicInputUtfOCP=

60 \addbeforeocplist 500 \BasicUtfUni

61 \nullocplist

10

This OCP list is intended for 8-bit texts using Latin ISO-8859-1 codepage, but\BasicInputIsoOCP

note that it doesn’t perform any real conversion, since ISO-8859-1 character codes
are the same as in Unicode, and Ω automatically distinguishes 8-bit and 2-byte
input.

62 \ocplist\BasicInputIsoOCP=

63 \addbeforeocplist 500 \BasicIsoUni

64 \nullocplist

This OCP list is intended for 8-bit texts using Latin windows-1252 codepage.\BasicInputWinOCP

65 \ocplist\BasicInputWinOCP=

66 \addbeforeocplist 500 \BasicWinUni

67 \nullocplist

The following OCP lists are used to convert a text to an Ω output.
A conversion to a Unicode font. The only operation which may be performed\LatinUniOutOCP

here is setting up the Latin ligatures.

68 \ocplist\LatinUniOutOCP=

69 \addbeforeocplist 3500 \LatinUniToLig

70 \nullocplist

A conversion to the default omlgc font. Its encoding differs from Unicode, and\LatinOmegaOutOCP

so a special conversion routine is required.

71 \ocplist\LatinOmegaOutOCP=

72 \addbeforeocplist 3500 \UniToOmega

73 \nullocplist

A conversion from Unicode to the T1 encoding.\LatinTexOutOCP

74 \ocplist\LatinTexOutOCP=

75 \addbeforeocplist 3500 \LatinUniToTex

76 \nullocplist

This OCP list converts ASCII digits to their oldstyle equivalents. Note that it\OldstyleOCP

is not compatible with the omlgc font.

77 \ocplist\OldstyleOCP=

78 \addbeforeocplist 4000 \Oldstyle

79 \nullocplist

The following key allows to set input encoding globally for the whole document
instead of setting it separately for each language. Of course, from all the standard
codepages only ‘utf-8’ makes a sense in this context. ‘ucs-2’ is also supported,
but this encoding doesn’t require any translation processes, because Ω uses it by
default anyway.

Beginning from ANTOMEGA v. 0.8 you can also select ‘sw’ to match a specific
Unicode character representation, used in files generated by MacKichan software
products.

80 \let\BasicInputOCP\BasicInputUcsOCP

81 \define@key{antomega}{input}[ucs-2]{

82 \def\@tmpa{#1}%

83 \ifx\@tmpa\opt@utf%

84 \let\BasicInputOCP\BasicInputUtfOCP%

85 \typeout{Antomega package option: input=utf-8}

86 \else\ifx\@tmpa\opt@sw%

87 \def\U##1{/QQ[##1]}%

11

88 \def\rmdefault{swtimes}%

89 \let\westernrm\rmdefault%

90 \LoadOCPByName{\BasicSWordUni}{sw2uni}%

91 \ocplist\BasicInputSWordOCP=

92 \addbeforeocplist 500 \BasicSWordUni

93 \nullocplist

94 \let\BasicInputOCP\BasicInputSWordOCP%

95 \typeout{Antomega package option: input=sw}

96 \else%

97 \let\BasicInputOCP\BasicInputUcsOCP%

98 \typeout{Antomega package option: input=ucs-2}

99 \fi}

. ANTOMEGA includes a special translation process, uppercase-dflt.ocp,\UppercaseOCP

based on the uppercase.ocp file, available in older Ω distribution, which may
be used for lowercase to uppercase conversion. Although standard conversion
rules, based on \lccode and \uccode settings, usually produce a better result, I
have to use the OCP-based conversion by default, because Ω incorrectly processes
some character codes in its UTF-8 mode. You can disable this feature by setting
uppercase=standard.

100 \LoadOCPByName{\Uppercase}{uppercase-dflt}

101 \ocplist\UppercaseOCP=

102 \addbeforeocplist 3000 \Uppercase

103 \nullocplist

104 \def\MakeUppercase#1{{\pushocplist\UppercaseOCP#1}}

105 \def\opt@standard{standard}

106 \define@key{antomega}{uppercase}[ocp]{

107 \def\@tmpa{#1}

108 \ifx\@tmpa\opt@standard

109 \let\MakeUppercase\uppercase

110 \typeout{Antomega package option: use character codes}

111 \typeout{for conversion to Uppercase}

112 \fi}

This command supposes that our text font contains old style numerals and\oldstylenums

that they are mapped to their places in the Unicode Private Use area as defined
in AGL. Don’t use it with the omlgc font.

113 \def\oldstylenums#1{{\pushocplist\OldstyleOCP#1}}

9.3 Encoding-independent commands for printing special
characters

After expanding a command, Omega puts the result back into the OCP stack. If\noocpchar

the result of expansion contains some characters, which have a special meaning in
the TEX system, they will be processed again, instead of typing into the output.
So it is impossible e. g. to use the \% command in order to obtain the percent
sign, because the character produced by that command is recognized anyway as a
comment mark after processing it via OCP. The same problem affects character
codes less than 0x20 (used in most 8-bit encodings), since these characters usually
have no \catcode assigned, and so are treated as invalid in the input.

Previously some hacks were used to prevent this effect. For example, in the
omlgc some ASCII characters are reproduced once again in the 0x80–0x0F range,

12

not used in Unicode, so that e. g. the \% command could actually refer to a slot
different from the ‘real’ percent sign. For 8-bit fonts we had to assign code 12 to
some characters in order to make them ‘valid’. Older ANTOMEGA versions had
a special option, specials, used to control such situations.

However, this option is deprecated (and removed) now. Instead, we just define
a special command which puts \clearocplists before \char in order to prevent
the result from placing into the OCP stack. . .

114 \def\noocpchar#1{{\clearocplists\char#1}}

. . . and then apply it to the most commonly used special characters.

115 \def\#{\noocpchar{"23}}

116 \def\%{\noocpchar{"25}}

117 \def\&{\noocpchar{"26}}

9.4 Omega-specific commands to handle TEX font encod-
ings

It is necessary to declare a special encoding for Omega-specific 2-byte fonts. Ω\uniencoding

developers called it UT1.

118 \def\uniencoding{UT1}

The concept of current font encoding doesn’t really matter for ANTOMEGA.\ant@load@encoding

Although some text commands traditionally used in LATEX are allowed in the
input, they just should be always mapped to the same Unicode codepoints, and it
is a task of translation processes to translate them to the current font encoding.

So the only reason why we have to declare font encodings at all is that Omega
needs to know the current encoding in order to select an appropriate font. That’s
why antomega no longer loads any encoding definition files. Instead, whatever
encoding is requested, antomega always declares it itself, and then loads the same
list of mappings between text commands and Unicode codepoints.

119 \def\ant@load@encoding#1{%

120 \edef\ant@encodingfile{%

121 \lowercase{\def\noexpand\ant@encodingfile{#1enc-antomega.def}}}%

122 \ant@encodingfile

123 \InputIfFileExists{\ant@encodingfile}{}{%

124 \DeclareFontEncoding{#1}{}{}

125 \PackageWarning{antomega}{The \ant@encodingfile\ file was not found.

126 The #1 encoding was defined by antomega.}{}

127 }

128 \let\ant@encodingfile\@undefined

129 }

130 \ant@load@encoding{\uniencoding}

131 \def\encodingdefault{\uniencoding}

Since T1 is loaded into the Lambda format, we have to redefine it now.

132 \ant@load@encoding{T1}

9.5 Font issues

The omlgc font is not perfect, but it is included into all standard TEX distributions.
So, it will be used by default.

133 \def\rmdefault{omlgc}

13

Antomega stores its default font names in the \westernrm, \westernsf and
\westerntt variables, since \rmdefault, \sfdefault and \ttdefault will be
redefined each time we switch to a new language.

134 \ifx\westernrm\@undefined\let\westernrm=\rmdefault\fi

135 \ifx\westernsf\@undefined\let\westernsf=\sfdefault\fi

136 \ifx\westerntt\@undefined\let\westerntt=\ttdefault\fi

Generally speaking, with Ω we should use translation processes rather than
active characters. So I made textasciitilde an ‘other symbol’.

137 \catcode‘\~=12

9.6 Language-specific commands which should be loaded
into the Lambda format

Again, no tests for \language and \newlanguage, because Ω should be always
compatible with TEX version 3.0.

138 \countdef\last@language=19

To add languages to TEX’s memory plain TEX version 3.0 supplies \newlanguage.\addlanguage

However, a new macro is defined here, because the original \newlanguage was de-
fined to be \outer.

139 \def\addlanguage{\alloc@9\language\chardef\@cclvi}

The macro \adddialect can be used to add the name of a dialect or variant\adddialect

language, for which an already defined hyphenation table can be used.

140 \def\adddialect#1#2{%

141 \global\chardef#1#2\relax

142 \wlog{\string#1 = a dialect from \string\language#2}}

Users might want to test (in a private package for instance) which language is\iflanguage

currently active. For this we provide a test macro, \iflanguage, that has three
arguments. It checks whether the first argument is a known language. If so, it
compares the first argument with the value of \language. Then, depending on
the result of the comparison, it executes either the second or the third argument.

143 \def\iflanguage#1{%

144 \expandafter\ifx\csname l@#1\endcsname\relax

145 \PackageWarning{antomega}{#1 is not a known language.}%

146 \else

147 \ifnum\csname l@#1\endcsname=\language

148 \expandafter\@firstoftwo

149 \else

150 \expandafter\@secondoftwo

151 \fi%

152 \fi}

9.7 Handling character codes

We can’t get correct hyphenation for our 2-byte characters without setting
\catcode, \lccode and \uccode for each of them. The following commands
simplify making such definitions.

This command takes two arguments, the first being an uppercase character and\makeletter

14

the second a corresponding lowercase character, and sets \lccode and \uccode

for both characters.

153 \ifx\makeletter\@undefined

154 \def\makeletter#1#2{%

155 \ifnum\catcode#2=11\else\catcode#2=12 \fi

156 \ifnum\catcode#1=11\else\catcode#1=12 \fi

157 \uccode#1=#1 \uccode#2=#1%

158 \lccode#1=#2 \lccode#2=#2}

159 \fi

This command takes two arguments, the first being an uppercase character and\makelcletter

the second a corresponding lowercase character, and sets \lccode and \uccode

for the lowercase character.

160 \ifx\makelcletter\@undefined

161 \def\makelcletter#1#2{%

162 \ifnum\catcode#2=11\else\catcode#2=12 \fi

163 \uccode#2=#1%

164 \lccode#2=#2}

165 \fi

This command takes two arguments, the first being an uppercase character and\makeucletter

the second a corresponding lowercase character, and sets \lccode and \uccode

for the uppercase character.

166 \ifx\makeucletter\@undefined

167 \def\makeucletter#1#2{%

168 \ifnum\catcode#1=11\else\catcode#1=12 \fi

169 \uccode#1=#1%

170 \lccode#1=#2}

171 \fi

This command takes two arguments, both of them being uppercase or lowercase\makesameletter

characters, and sets \lccode and \uccode for character 1 equal to character 2.

172 \ifx\makesameletter\@undefined

173 \def\makesameletter#1#2{%

174 \ifnum\catcode#1=11\else\catcode#1=12 \fi

175 \uccode#1=\uccode#2%

176 \lccode#1=\lccode#2}

177 \fi

The following code should be written into antomega.cfg. You may edit that
file depending from which Unicode ranges you really need.

178 \input{uni0100.def} % Latin Extended-A

179 \input{uni0370.def} % Greek Basic

180 \input{uni0400.def} % Cyrillic

181 \input{uni1f00.def} % Greek Extended

In hyphen.cfg first we test if antomega.cfg exists, and then load it.

182 \openin1 = antomega.cfg

183 \ifeof1

184 \message{I couldn’t find the file antomega.cfg.\space

185 Codes for Unicode characters will not be loaded.}

186 \else

187 \input{antomega.cfg}

188 \fi

189 \closein1

15

9.8 Warnings and error messages

This command is used to show a warning message if Ω can’t find a file with\ant@nocodes

lccodes/uccodes for the specified Unicode range.

190 \providecommand*{\ant@nocodes}[3]{%

191 \PackageWarningNoLine{antomega}%

192 {No file was found with symbol codes\MessageBreak

193 for the #2 range #3.\MessageBreak

194 You may proceed, but your #1 texts\MessageBreak

195 probably will not be correctly hyphenated.}}

This macro is based on Babel’s \@nopatterns command. However I removed\ant@nopatterns

test if \PackageWarningNoLine is defined, because probably nobody will try to
build LATEX 2.09 based format for Ω.

196 \providecommand*{\ant@nopatterns}[1]{%

197 \PackageWarningNoLine{antomega}%

198 {No hyphenation patterns were loaded for\MessageBreak

199 the language ‘#1’\MessageBreak

200 I will use the patterns loaded for \string\language=0

201 instead}}

This macro defines the error message which will be displayed if the requested\ant@nolang

language definition file was not found.

202 \providecommand*{\ant@nolang}[1]{%

203 \PackageWarningNoLine{antomega}%

204 {Couldn’t find file omega-#1.ldf!!}}

9.9 Different corrections for standard LATEX commands

With Ω we usually have to control all commands which print some strings (for ex-
ample, to headers/footers), so that they always apply correct translation processes
and correct font to the text they produce. However, modifying these commands
may be inconvenient if we have to use some packages which also try to redefine
them. If you want to prevent antomega from modifying these commands, you may
control its behavior by setting the localmarks option either to ‘on’ or to ‘off’.

This command is executed every time we are switching to a new language. It\local@marks

applies all rules specific for this language to the text, which is written to head-
ers/footers.

205 \def\opt@enabled{on}

206 \def\opt@disabled{off}

207 \def\opt@tex{tex}

208 \def\opt@omega{omega}

209 \def\opt@unicode{unicode}

210 \def\opt@utf{utf-8}

211 \def\opt@ucs{ucs-2}

212 \def\opt@sw{sw}

213 \define@key{antomega}{localmarks}[on]{%

214 \def\@tmpa{#1}

215 \ifx\@tmpa\opt@enabled

216 \def\local@marks##1{%

217 \def\markboth####1####2{%

218 \begingroup%

16

219 \let\label\relax \let\index\relax \let\glossary\relax%

220 \unrestored@protected@xdef\@themark%

221 {{\foreignlanguage{##1}{####1}}{\foreignlanguage{##1}{####2}}}%

222 \@temptokena \expandafter{\@themark}%

223 \mark{\the\@temptokena}%

224 \endgroup%

225 \if@nobreak\ifvmode\nobreak\fi\fi}%

226 \def\markright####1{%

227 \begingroup%

228 \let\label\relax \let\index\relax \let\glossary\relax%

229 \expandafter\@markright\@themark{\foreignlanguage{##1}{####1}}%

230 \@temptokena \expandafter{\@themark}%

231 \mark{\the\@temptokena}%

232 \endgroup%

233 \if@nobreak\ifvmode\nobreak\fi\fi}%

234 \def\@markright####1####2####3{\@temptokena{####1}%

235 \unrestored@protected@xdef\@themark{{\the\@temptokena}%

236 {{####3}}}}}

237 \else\ifx\@tmpa\opt@disabled

238 \def\local@marks#1{}

239 \typeout{Antomega package option: localmarks=off}

240 \fi\fi

241 }

The following option is preserved for backwards compatibility only. Use ‘local-
marks=off’ instead.

242 \DeclareOption{nolocalmarks}{\setkeys{antomega}{localmarks=off}}

By default string conversion in headers and footers is enabled.

243 \setkeys{antomega}{localmarks=on}

This command was taken from the Babel package and renamed in order to\oaddto

avoid conflicts. It is useful for modifying some language-specific commands, pre-
defined in *.lfd files.

244 \def\oaddto#1#2{%

245 \ifx#1\@undefined

246 \def#1{#2}%

247 \else

248 \ifx#1\relax

249 \def#1{#2}%

250 \else

251 {\toks@\expandafter{#1#2}%

252 \xdef#1{\the\toks@}}%

253 \fi

254 \fi

255 }

9.10 Loading languages

Standard commands for loading languages (the core of the antomega package).
This command requires one arguments which must be a language name and\background

loads it as the first language for our document.

17

The optional argument is a set of parameters and their values for the given
language.

256 \newcommand{\background}[2][]{%

257 \IfFileExists{omega-#2.ldf}%

258 {\input{omega-#2.ldf}%

259 \AtBeginDocument{\selectlanguage[#1]{#2}}%

260 \newenvironment{#2}[1][]{\begin{otherlanguage}[####1]{#2}}%

261 {\end{otherlanguage}}%

262 \expandafter\newcommand\csname local#2\endcsname[2][]{%

263 \foreignlanguage[####1]{#2}{####2}}}%

264 {\ant@nolang{#2}}%

265 }

This command takes one argument which must be a language name and loads\load

it in addition to the first language.
The optional argument is a set of parameters and their values for the given

language.
Both \background and \load commands are used to define a \local<$language>

command and a <$language> environment. Commands and environments with
these names were standard way to switch languages in the original omega package,
as well as in antomega until the version 0.6. Now they are defined in terms of
standard babel-like commands.

266 \newcommand{\load}[2][]{\IfFileExists{omega-#2.ldf}

267 {\input{omega-#2.ldf}\setkeys{#2}{#1}%

268 \newenvironment{#2}[1][]{\begin{otherlanguage}[####1]{#2}}%

269 {\end{otherlanguage}}

270 \expandafter\newcommand\csname local#2\endcsname[2][]{%

271 \foreignlanguage[####1]{#2}{####2}}}

272 {\ant@nolang{#2}}}

9.11 Default values for language-specific settings

First we define some standard values for the punctuation commands, used by
lat2punct.otp. The command names are self-explanative.

273 \def\common@punctuation{%

274 \def\InitialThinSpace{\nobreak\hskip.2em\ignorespaces}%

275 \def\ExplicitHyphen{\nobreak\-\nobreak\hskip\z@skip}%

276 \def\AllowHyphenation{\hskip\z@skip}%

277 \def\DisableLigature{\textormath{\nobreak\discretionary{-}{}%

278 {\kern.03em}\allowhyphens}{}}%

279 \def\CompoundWordMarkWithBreakpoint{\nobreak-\hskip\z@skip}%

280 \def\CompoundWordMarkNoBreakpoint{\textormath{\leavevmode\hbox{-}}{-}}%

281 \def\LeftDoubleQuotationMark{^^^^201c}%

282 \def\RightDoubleQuotationMark{^^^^201d}%

283 \def\LeftPointingDoubleAngleQuotationMark{^^^^00ab}%

284 \def\RightPointingDoubleAngleQuotationMark{^^^^00bb}%

285 \def\GermanLeftDoubleQuotationMark{^^^^201e}%

286 \def\GermanRightDoubleQuotationMark{^^^^201c}%

287 \def\QuestionMark{?}%

288 \def\ExclamationMark{!}%

289 \def\InvertedQuestionMark{^^^^00bf}%

290 \def\InvertedExclamationMark{^^^^00a1}%

18

291 \def\Semicolon{;}%

292 \def\Colon{:}%

293 \def\NonBreakingSpace{\leavevmode\nobreak\ }}

The \common@font macro will be used at the beginning of the document and\common@font

also each time we should return to the default fonts (e. g. before switching to
another language).

294 \def\common@font{\normalfont\fontfamily{\westernrm}%

295 \fontencoding{\uniencoding}\selectfont%

296 \let\rmdefault=\westernrm\let\sfdefault=\westernsf%

297 \let\ttdefault=\westerntt\let\encodingdefault=\uniencoding}

This macro is used for enabling default hyphenation patterns.\common@language

298 \def\common@language{%

299 \protect\language=0%

300 \lefthyphenmin=2\righthyphenmin=3}

The \originalOmega macro is used to switch all settings, which could be\noextrascurrent

\originalOmega modified by the language switching commands, to their default values.

301 \def\noextrascurrent#1{\@ifundefined{noextras@#1}{}%

302 {\csname noextras@#1\endcsname}}

303 \def\originalOmega{\@ifundefined{languagename}{}%

304 {\noextrascurrent{\languagename}}%

305 \common@language%

306 \common@punctuation%

307 \common@font%

308 \clearocplists%

309 }

310 \AtBeginDocument{\originalOmega}

9.12 Language switching commands

In case we have Babel’s hyphen.cfg loaded into format, \foreignlanguage is
already defined, and so we have to unset it first.

311 \@ifundefined{foreignlanguage}{}%

312 {\let\foreignlanguage\@undefined}

This macro works exactly as Babel’s \foreignlanguage command, but it takes\foreignlanguage

3 arguments. The first (optional) argument allows to set any options, defined in
the support file for the given language. The second argument is languages’s name
itself, and the third — the piece of text, which should be typeset in this language.

313 \newcommand{\foreignlanguage}[3][]{%

314 \@ifundefined{inlineextras@#2}{\ant@nolang{#2}}{%

315 {\def\languagename{#2}%

316 \setkeys{#2}{#1}%

317 \csname inlineextras@#2\endcsname#3}%

318 }}

\selectlanguage have to be redefined too.

319 \@ifundefined{selectlanguage}{}%

320 {\let\selectlanguage\@undefined}

19

This macro works exactly as Babel’s \selectlanguage command, but it takes\selectlanguage

2 arguments. The second argument is languages’s name itself, and the first (op-
tional) allows to set any options, defined in the support file for the given language.

321 \newcommand{\selectlanguage}[2][]{%

322 \@ifundefined{blockextras@#2}{\ant@nolang{#2}}{%

323 \def\ant@pop@language{%

324 \ant@set@language{\languagename}%

325 \let\emp@langname\undefined}%

326 \aftergroup\ant@pop@language%

327 \setkeys{#2}{#1}%

328 \ant@set@language{#2}%

329 }}

330 \newcommand{\ant@set@language}[1]{%

331 \select@language{#1}%

332 \if@filesw%

333 \protected@write\@auxout{}{\protect\select@language{#1}}%

334 \addtocontents{toc}{\protect\select@language{#1}}%

335 \addtocontents{lof}{\protect\select@language{#1}}%

336 \addtocontents{lot}{\protect\select@language{#1}}%

337 \fi%

338 }

339 \@ifundefined{select@language}{}%

340 {\let\select@language\@undefined}

341 \newcommand{\select@language}[1]{%

342 \originalOmega%

343 \edef\languagename{#1}%

344 \csname blockextras@#1\endcsname%

345 }

346 \let\ant@pop@language\relax

We have to redefine the otherlanguage environment as well.

347 \@ifundefined{otherlanguage}{}%

348 {\let\otherlanguage\@undefined}

349 \@ifundefined{endotherlanguage}{}%

350 {\let\endotherlanguage\@undefined}

This environment works exactly as Babel’s otherlanguage environment. Theotherlanguage

only difference is that is has an optional argument allowing to set any options,
defined in the .ldf file.

351 \newenvironment{otherlanguage}[2][]{%

352 \selectlanguage[#1]{#2}%

353 }{}

9.13 Handling hyphenation rules

The environment hyphenrules can be used to select just the hyphenation rules.hyphenrules

This environment does not change \languagename and when the hyphenation
rules specified were not loaded it has no effect.

354 \def\hyphenrules#1{%

355 \expandafter\ifx\csname l@#1\endcsname\@undefined

356 \@nolanerr{#1}%

357 \else

358 \language=\csname l@#1\endcsname\relax

20

359 \fi

360 }

361 \def\endhyphenrules{}

This macro sets the values of \lefthyphenmin and \righthyphenmin. It ex-\set@hyphenmins

pects two values as its argument.

362 \def\set@hyphenmins#1#2{\lefthyphenmin#1\righthyphenmin#2}

This macro takes 3 arguments: a language name and default \lefthyphenmin\local@hyphenmins

and \righthyphenminvalues for that language. First it tests if \<language>hyphenmins
is already defined (i. e. some \lefthyphenmin and \righthyphenmin values were
specified in the hyphenation patterns loaded into format), and either executes this
command, or sets both variables to the provided default values.

363 \newcommand{\local@hyphenmins}[3]{%

364 \@ifundefined{#1hyphenmins}%

365 {\lefthyphenmin=#2\righthyphenmin=#3}%

366 {\csname #1hyphenmins\endcsname}%

367 }

9.14 Loading hyphenation rules into format

Each line in the file language.dat is processed by \process@line after it is read.\process@line

The first thing this macro does is to check wether the line starts with =. When
the first token of a line is an =, the macro \process@synonym is called; otherwise
the macro \process@language will continue.

368 \def\process@line#1#2 #3/{%

369 \ifx=#1

370 \process@synonym#2 /

371 \else

372 \process@language#1#2 #3/%

373 \fi

374 }

This macro takes care of the lines which start with an =. It needs an empty\process@synonym

token register to begin with.

375 \toks@{}

376 \def\process@synonym#1 /{%

377 \ifnum\last@language=\m@ne

When no languages have been loaded yet the name following the = will be a
synonym for hyphenation register 0.

378 \expandafter\chardef\csname l@#1\endcsname0\relax

379 \wlog{\string\l@#1=\string\language0}

As no hyphenation patterns are read in yet, we can not yet set the hyphenmin
paramaters. Therefor a commands to do so is stored in a token register and
executed when the first pattern file has been processed.

380 \toks@\expandafter{\the\toks@

381 \expandafter\let\csname #1hyphenmins\expandafter\endcsname

382 \csname\languagename hyphenmins\endcsname}%

383 \else

21

Otherwise the name will be a synonym for the language loaded last.

384 \expandafter\chardef\csname l@#1\endcsname\last@language

385 \wlog{\string\l@#1=\string\language\the\last@language}

We also need to copy the hyphenmin paramaters for the synonym.

386 \expandafter\let\csname #1hyphenmins\expandafter\endcsname

387 \csname\languagename hyphenmins\endcsname

388 \fi

389 }

The macro \process@language is used to process a non-empty line from the\process@language

‘configuration file’. It has three arguments, each delimited by white space. The
third argument is optional, therefore a / character is expected to delimit the last
argument. The first argument is the ‘name’ of a language, the second is the name
of the file that contains the patterns. The optional third argument is the name of
a file containing hyphenation exceptions.

The first thing to do is call \addlanguage to allocate a pattern register and
to make that register ‘active’.

390 \def\process@language#1 #2 #3/{%

391 \expandafter\addlanguage\csname l@#1\endcsname

392 \expandafter\language\csname l@#1\endcsname

393 \def\languagename{#1}%

Then the ‘name’ of the language that will be loaded now is added to the token
register \toks8. and finally the pattern file is read.

394 \global\toks8\expandafter{\the\toks8#1, }%

For some hyphenation patterns it is needed to load them with a specific font
encoding selected. This can be specified in the file language.dat by adding for
instance ‘:T1’ to the name of the language. The macro \ant@get@enc extracts
the font encoding from the language name and stores it in \ant@hyph@enc.

395 \begingroup

396 \ant@get@enc#1:\@@@

397 \ifx\ant@hyph@enc\@empty

398 \else

399 \fontencoding{\ant@hyph@enc}\selectfont

400 \fi

Some pattern files contain assignments to \lefthyphenmin and \righthyphenmin.
TEX does not keep track of these assignments. Therefor we try to detect such
assignments and store them in the \<langvar>hyphenmins macro. When no as-
signments were made we provide a default setting.

401 \lefthyphenmin\m@ne

Some pattern files contain changes to the \lccode en \uccode arrays. Such
changes should remain local to the language; therefor we process the pattern file in
a group; the \patterns command acts globally so it’s effect will be remembered.

402 \input #2\relax

Now we globally store the settings of \lefthyphenmin and \righthyphenmin

and close the group.

403 \ifnum\lefthyphenmin=\m@ne

22

404 \else

405 \expandafter\xdef\csname #1hyphenmins\endcsname{%

406 \set@hyphenmins{\the\lefthyphenmin}{\the\righthyphenmin}}%

407 \fi

408 \endgroup

If the counter \language is still equal to zero we set the hyphenmin parameters
to the values for the language loaded on pattern register 0.

409 \ifnum\the\language=\z@

410 \expandafter\ifx\csname #1hyphenmins\endcsname\relax

411 \set@hyphenmins\tw@\thr@@\relax

412 \else

413 \expandafter\expandafter\expandafter\set@hyphenmins

414 \csname #1hyphenmins\endcsname

415 \fi

Now execute the contents of token register zero as it may contain commands
which set the hyphenmin parameters for synonyms that were defined before the
first pattern file is read in.

416 \the\toks@

417 \fi

Empty the token register after use.

418 \toks@{}%

When the hyphenation patterns have been processed we need to see if a file
with hyphenation exceptions needs to be read. This is the case when the third
argument is not empty and when it does not contain a space token.

419 \def\ant@tempa{#3}%

420 \ifx\ant@tempa\@empty

421 \else

422 \ifx\ant@tempa\space

423 \else

424 \input #3\relax

425 \fi

426 \fi

427 }

The macro \ant@get@enc extracts the font encoding from the language name\ant@get@enc

\ant@hyph@enc and stores it in \ant@hyph@enc. It uses delimited arguments to acheive this.

428 \def\ant@get@enc#1:#2\@@@{%

First store both arguments in temporary macros,

429 \def\ant@tempa{#1}%

430 \def\ant@tempb{#2}%

then, if the second argument was empty, no font encoding was specified and
we’re done.

431 \ifx\ant@tempb\@empty

432 \let\ant@hyph@enc\@empty

433 \else

23

But if the second argument was not empty it will now have a superfluous colon
attached to it which we need to remove. This done by feeding it to \ant@get@enc.
The string that we are after will then be in the first argument and be stored in
\ant@tempa.

434 \ant@get@enc#2\@@@

435 \edef\ant@hyph@enc{\ant@tempa}%

436 \fi}

The configuration file can now be opened for reading.

437 \openin1 = language.dat

See if the file exists, if not, use the default hyphenation file hyphen.tex. The
user will be informed about this.

438 \ifeof1

439 \message{I couldn’t find the file language.dat,\space

440 I will try the file hyphen.tex}

441 \input hyphen.tex\relax

442 \else

Pattern registers are allocated using count register \last@language. Its initial
value is 0. The definition of the macro \newlanguage is such that it first incre-
ments the count register and then defines the language. In order to have the first
patterns loaded in pattern register number 0 we initialize \last@language with
the value −1.

443 \last@language\m@ne

We now read lines from the file untill the end is found

444 \loop

While reading from the input it is useful to switch off recognition of the end-
of-line character. This saves us stripping off spaces from the contents of the
controlsequence.

445 \endlinechar\m@ne

446 \read1 to \ant@line

447 \endlinechar‘\^^M

Empty lines are skipped.

448 \ifx\ant@line\@empty

449 \else

Now we add a space and a / character to the end of \ant@line. This is needed
to be able to recognize the third, optional, argument of \process@language later
on.

450 \edef\ant@line{\ant@line\space/}%

451 \expandafter\process@line\ant@line

452 \fi

Check for the end of the file. To avoid a new if control sequence we create
the necessary \iftrue or \iffalse with the help of \csname. But there is one
complication with this approach: when skipping the loop...repeat TEX has to
read \if/\fi pairs. So we have to insert a ‘dummy’ \iftrue.

453 \iftrue \csname fi\endcsname

454 \csname if\ifeof1 false\else true\fi\endcsname

455 \repeat

24

Reactivate the default patterns,

456 \language=0

457 \fi

and close the configuration file.

458 \closein1

Also remove some macros from memory

459 \let\process@language\@undefined

460 \let\process@synonym\@undefined

461 \let\process@line\@undefined

462 \let\ant@tempa\@undefined

463 \let\ant@tempb\@undefined

464 \let\ant@eq@\@undefined

465 \let\ant@line\@undefined

466 \let\ant@get@enc\@undefined

467 \ifx\addto@hook\@undefined

468 \else

469 \expandafter\addto@hook\expandafter\everyjob\expandafter{%

470 \expandafter\typeout\expandafter{\the\toks8 loaded.}}

471 \fi

9.15 Processing options

472 \DeclareOption*{%

473 \edef\@temp{\noexpand\setkeys{antomega}{\CurrentOption}}%

474 \@temp%

475 }

476 \ProcessOptions

10 Encoding definition files used by ANTOMEGA

Generally speaking, ANTOMEGA doesn’t care about TEX font encodings very
much, because, unlike standard TEX, it prefers to operate directly with Unicode
codepoints, rather than with so-called text commands, mapped to some slots in the
current encoding. This means that any command, expected to produce a printable
character, must be always mapped to the corresponding Unicode slot, while any
conversion to the real output font encoding should be performed by translation
processes (ΩCP). However, any text command should be considered valid, only if
the character it produces can really be converted to the output encoding.

That’s why in addition to the Unicode based UT1 encoding, which contains
the full list of standard command to Unicode mapping, I had to provide some
special subsets of that list, corresponding to standard 8-bit encodings, supported
by ANTOMEGA (T1, T2A and LGR). So differences between these encoding
definition files affect mainly the set of supported characters, rather than character
mappings itself.

10.1 Common definitions, applied to all encodings

477 〈∗UT1 | T1 | T2A | LGR〉
478 \NeedsTeXFormat{LaTeX2e}

479 〈UT1〉\ProvidesFile{ut1enc-antomega.def}

25

480 〈T1〉\ProvidesFile{t1enc-antomega.def}
481 〈T2A〉\ProvidesFile{t2aenc-antomega.def}
482 〈LGR〉\ProvidesFile{lgrenc-antomega.def}
483 [2005/05/07 v0.8 Antomega encodings definition file]

484 〈UT1〉\DeclareFontEncoding{UT1}{}{}
485 〈T1〉\DeclareFontEncoding{T1}{}{}
486 〈T2A〉\DeclareFontEncoding{T2A}{}{}
487 〈LGR〉\DeclareFontEncoding{LGR}{}{}
488 〈UT1〉\def\ant@encoding{UT1}
489 〈T1〉\def\ant@encoding{T1}
490 〈T2A〉\def\ant@encoding{T2A}
491 〈LGR〉\def\ant@encoding{LGR}

10.2 Unicode accents

Accents represent a special part of the encoding, because:

• we have to declare them first, since they have to be already defined before
any composite character declaration can occur in the encoding table;

• unfortunately, the \accent command bypasses Ω translation processes.

In order to circumvent the last limitation, here we are redefining all standard
commands, used for typing accents in LATEX, to produce just a character followed
by a Unicode combining accent mark. Since this sequence by itself contains no
\accent commands, it may be processed by ΩCP’s, e. g. converted to Unicode
from another encoding. After the conversion the resulting string should be turned
back to the \accent command.

492 \DeclareTextCommand{\‘}{\ant@encoding}[1]{#1^^^^0300}

493 \DeclareTextCommand{\’}{\ant@encoding}[1]{#1^^^^0301}

494 〈!LGR〉\DeclareTextCommand{\^}{\ant@encoding}[1]{#1^^^^0302}
495 〈!LGR〉\DeclareTextCommand{\~}{\ant@encoding}[1]{#1^^^^0303}
496 \DeclareTextCommand{\"}{\ant@encoding}[1]{#1^^^^0308}

497 〈!LGR〉\DeclareTextCommand{\H}{\ant@encoding}[1]{#1^^^^030b}
498 〈!LGR〉\DeclareTextCommand{\r}{\ant@encoding}[1]{#1^^^^030a}
499 〈!LGR〉\DeclareTextCommand{\v}{\ant@encoding}[1]{#1^^^^030c}
500 \DeclareTextCommand{\u}{\ant@encoding}[1]{#1^^^^0306}

501 \DeclareTextCommand{\=}{\ant@encoding}[1]{#1^^^^0304}

502 〈!LGR〉\DeclareTextCommand{\.}{\ant@encoding}[1]{#1^^^^0307}
503 〈UT1 | T2A〉\DeclareTextCommand{\f}{\ant@encoding}[1]{#1^^^^0311}
504 〈UT1 | T2A〉\DeclareTextCommand{\C}{\ant@encoding}[1]{#1^^^^030f}
505 〈!LGR〉\DeclareTextCommand{\b}{\ant@encoding}[1]{#1^^^^0331}
506 〈!LGR〉\DeclareTextCommand{\c}{\ant@encoding}[1]{#1^^^^0327}
507 〈!LGR〉\DeclareTextCommand{\d}{\ant@encoding}[1]{#1^^^^0323}
508 〈!LGR〉\DeclareTextCommand{\k}{\ant@encoding}[1]{#1^^^^0328}

10.3 Encoding-dependent accents

Now we have to define a really separate set of accents (with different mappings) for
each of our encodings. These accent commands are declared with long meaningful
names, since they are not supposed to be typed by itself: instead, they should
be produced by ΩCP’s as a result of processing characters followed by combining
accent marks.

26

10.3.1 UT1 accents

Accents are mapped mainly to their places in the Unicode ‘Spacing Modifier Let-
ters’ area, of course, with the exception of dieresis and cedilla, which have specific
placements in the Unicode standard.

Note that we are not using here the ‘Combining Diacritical Marks’ area, be-
cause zero-width accents, which are present in that area in most fonts, are not
very useful for TEX accent positioning engine. That’s why I preferred to map
additional ‘Cyrillic’ accents (i. e. Cyrillic flex and double grave) to the PUA po-
sitions, sometime defined by Adobe for spacing variants of these accents, instead
of using their combining versions, which have ‘legal’ slots in Unicode.

509 〈∗UT1〉
510 \DeclareTextAccent{\GraveAccent}{UT1}{"02CB}

511 \DeclareTextAccent{\AcuteAccent}{UT1}{"02CA}

512 \DeclareTextAccent{\CircumflexAccent}{UT1}{"02C6}

513 \DeclareTextAccent{\TildeAccent}{UT1}{"02DC}

514 \DeclareTextAccent{\DieresisAccent}{UT1}{"00A8}

515 \DeclareTextAccent{\HungarumlautAccent}{UT1}{"02DD}

516 \DeclareTextAccent{\RingAccent}{UT1}{"02DA}

517 \DeclareTextAccent{\CaronAccent}{UT1}{"02C7}

518 \DeclareTextAccent{\BreveAccent}{UT1}{"02D8}

519 \DeclareTextAccent{\MacronAccent}{UT1}{"02C9}

520 \DeclareTextAccent{\DotAboveAccent}{UT1}{"02D9}

521 \DeclareTextAccent{\CyrillicFlexAccent}{UT1}{"F6D5}

522 \DeclareTextAccent{\DoubleGraveAccent}{UT1}{"F6D6}

523 \DeclareTextAccent{\GreekCircumflexAccent}{UT1}{"1FC0}

524 \DeclareTextAccent{\GreekKoronisAccent}{UT1}{"1FBD}

525 \DeclareTextCommand{\BarBelowAccent}{UT1}[1]

526 {{\o@lign{\relax#1\crcr\hidewidth\sh@ft{29}%

527 \vbox to.2ex{\hbox{\noocpchar{"02C9}}\vss}\hidewidth}}}

528 \DeclareTextCommand{\CedillaAccent}{UT1}[1]

529 {\leavevmode\setbox\z@\hbox{#1}\ifdim\ht\z@=1ex\accent"00B8 #1%

530 \else{\ooalign{\hidewidth\noocpchar{"00B8}\hidewidth

531 \crcr\unhbox\z@}}\fi}

532 \DeclareTextCommand{\DotBelowAccent}{UT1}[1]

533 {{\o@lign{\relax#1\crcr\hidewidth\sh@ft{10}.\hidewidth}}}

534 \DeclareTextCommand{\OgonekAccent}{UT1}[1]

535 {\oalign{\null#1\crcr\hidewidth\noocpchar{"02DB}}}

536 〈/UT1〉

10.3.2 Common T1 and T2A accents

537 〈∗T1 | T2A〉
538 \DeclareTextAccent{\GraveAccent}{\ant@encoding}{0}

539 \DeclareTextAccent{\AcuteAccent}{\ant@encoding}{1}

540 \DeclareTextAccent{\CircumflexAccent}{\ant@encoding}{2}

541 \DeclareTextAccent{\TildeAccent}{\ant@encoding}{3}

542 \DeclareTextAccent{\DieresisAccent}{\ant@encoding}{4}

543 \DeclareTextAccent{\HungarumlautAccent}{\ant@encoding}{5}

544 \DeclareTextAccent{\RingAccent}{\ant@encoding}{6}

545 \DeclareTextAccent{\CaronAccent}{\ant@encoding}{7}

546 \DeclareTextAccent{\BreveAccent}{\ant@encoding}{8}

547 \DeclareTextAccent{\MacronAccent}{\ant@encoding}{9}

27

548 \DeclareTextAccent{\DotAboveAccent}{\ant@encoding}{10}

549 \DeclareTextCommand{\BarBelowAccent}{\ant@encoding}[1]

550 {\hmode@bgroup\o@lign{\relax#1\crcr\hidewidth\sh@ft{29}%

551 \vbox to.2ex{\hbox{\noocpchar{9}}\vss}\hidewidth}\egroup}

552 \DeclareTextCommand{\CedillaAccent}{\ant@encoding}[1]

553 {\leavevmode\setbox\z@\hbox{#1}\ifdim\ht\z@=1ex\accent11 #1%

554 \else{\ooalign{\hidewidth\noocpchar{11}\hidewidth

555 \crcr\unhbox\z@}}\fi}

556 \DeclareTextCommand{\DotBelowAccent}{\ant@encoding}[1]

557 {\hmode@bgroup

558 \o@lign{\relax#1\crcr\hidewidth\sh@ft{10}.\hidewidth}\egroup}

559 \DeclareTextCommand{\OgonekAccent}{\ant@encoding}[1]

560 {\oalign{\null#1\crcr\hidewidth\noocpchar{12}}}

561 〈/T1 | T2A〉
10.3.3 Cyrillic accents (T2A specific)

562 〈∗T2A〉
563 \DeclareTextAccent{\CyrillicFlexAccent}{T2A}{18}

564 \DeclareTextAccent{\DoubleGraveAccent}{T2A}{19}

565 \DeclareTextAccent{\U}{T2A}{20}

566 〈/T2A〉
10.3.4 LGR accents

567 〈∗LGR〉
568 \DeclareTextAccent{\GraveAccent}{LGR}{‘\‘}

569 \DeclareTextAccent{\AcuteAccent}{LGR}{‘\’}

570 \DeclareTextAccent{\BreveAccent}{LGR}{30}

571 \DeclareTextAccent{\MacronAccent}{LGR}{31}

572 \DeclareTextAccent{\GreekCircumflexAccent}{LGR}{‘\~}

573 〈/LGR〉

10.4 Standard ASCII characters

Most of the following characters are present in all standard encodings, so trans-
lation processes probably should never be applied to them. That’s why each
definition includes the \clearocplists command. This command also prevents
some characters from interpreting by Ω in their special meaning, while they need
to be just printed into the output.

574 〈UT1〉\DeclareTextCommand{\textquotedbl}{\ant@encoding}{\noocpchar{"22}}
575 〈UT1〉\DeclareTextCommand{\textquotesingle}{\ant@encoding}{\noocpchar{"27}}
576 〈∗!LGR〉
577 \DeclareTextCommand{\textdollar}{\ant@encoding}{\noocpchar{"24}}

578 \DeclareTextCommand{\textgreater}{\ant@encoding}{\noocpchar{"3C}}

579 \DeclareTextCommand{\textless}{\ant@encoding}{\noocpchar{"3E}}

580 \DeclareTextCommand{\textbackslash}{\ant@encoding}{\noocpchar{"5C}}

581 \DeclareTextCommand{\textasciicircum}{\ant@encoding}{\noocpchar{"5E}}

582 \DeclareTextCommand{\textunderscore}{\ant@encoding}{\noocpchar{"5F}}

583 \DeclareTextCommand{\textasciigrave}{\ant@encoding}{\noocpchar{"60}}

584 \DeclareTextCommand{\textbraceleft}{\ant@encoding}{\noocpchar{"7B}}

585 \DeclareTextCommand{\textbar}{\ant@encoding}{\noocpchar{"7C}}

586 \DeclareTextCommand{\textbraceright}{\ant@encoding}{\noocpchar{"7D}}

587 \DeclareTextCommand{\textasciitilde}{\ant@encoding}{\noocpchar{"7E}}

588 〈/!LGR〉

28

10.5 C1 Controls

589 〈UT1 | T1〉\DeclareTextSymbol{\textexclamdown}{\ant@encoding}{"00A1}
590 〈UT1〉\DeclareTextSymbol{\textcent}{\ant@encoding}{"00A2}
591 〈UT1 | T1〉\DeclareTextSymbol{\textsterling}{\ant@encoding}{"00A3}
592 〈∗UT1〉
593 \DeclareTextSymbol{\textcurrency}{\ant@encoding}{"00A4}

594 \DeclareTextSymbol{\textyen}{\ant@encoding}{"00A5}

595 \DeclareTextSymbol{\textbrokenbar}{\ant@encoding}{"00A6}

596 〈/UT1〉
597 〈!LGR〉\DeclareTextSymbol{\textsection}{\ant@encoding}{"00A7}
598 〈∗UT1〉
599 \DeclareTextSymbol{\textasciidieresis}{\ant@encoding}{"00A8}

600 \DeclareTextSymbol{\textcopyright}{\ant@encoding}{"00A9}

601 \DeclareTextSymbol{\textordfeminine}{\ant@encoding}{"00AA}

602 〈/UT1〉
603 \DeclareTextSymbol{\guillemotleft}{\ant@encoding}{"00AB}

604 〈∗UT1〉
605 \DeclareTextSymbol{\textlnot}{\ant@encoding}{"00AC}

606 \DeclareTextSymbol{\textregistered}{\ant@encoding}{"00AE}

607 \DeclareTextSymbol{\textasciimacron}{\ant@encoding}{"00AF}

608 \DeclareTextSymbol{\textdegree}{\ant@encoding}{"00B0}

609 \DeclareTextSymbol{\textpm}{\ant@encoding}{"00B1}

610 \DeclareTextSymbol{\texttwosuperior}{\ant@encoding}{"00B2}

611 \DeclareTextSymbol{\textthreesuperior}{\ant@encoding}{"00B3}

612 \DeclareTextSymbol{\textasciiacute}{\ant@encoding}{"00B4}

613 \DeclareTextSymbol{\textmu}{\ant@encoding}{"00B5}

614 \DeclareTextSymbol{\textparagraph}{\ant@encoding}{"00B6}

615 \DeclareTextSymbol{\textpilcrow}{\ant@encoding}{"00B6}

616 \DeclareTextSymbol{\textperiodcentered}{\ant@encoding}{"00B7}

617 \DeclareTextSymbol{\textonesuperior}{\ant@encoding}{"00B9}

618 \DeclareTextSymbol{\textordmasculine}{\ant@encoding}{"00BA}

619 〈/UT1〉
620 \DeclareTextSymbol{\guillemotright}{\ant@encoding}{"00BB}

621 〈∗UT1〉
622 \DeclareTextSymbol{\textonequarter}{\ant@encoding}{"00BC}

623 \DeclareTextSymbol{\textonehalf}{\ant@encoding}{"00BD}

624 \DeclareTextSymbol{\textthreequarters}{\ant@encoding}{"00BE}

625 〈/UT1〉
626 〈UT1 | T1〉\DeclareTextSymbol{\textquestiondown}{\ant@encoding}{"00BF}

10.6 Latin 1 Supplement

627 〈∗UT1 | T1〉
628 \DeclareTextComposite{\‘}{\ant@encoding}{A}{"00C0}

629 \DeclareTextComposite{\’}{\ant@encoding}{A}{"00C1}

630 \DeclareTextComposite{\^}{\ant@encoding}{A}{"00C2}

631 \DeclareTextComposite{\~}{\ant@encoding}{A}{"00C3}

632 \DeclareTextComposite{\"}{\ant@encoding}{A}{"00C4}

633 \DeclareTextComposite{\r}{\ant@encoding}{A}{"00C5}

634 \DeclareTextSymbol{\AE}{\ant@encoding}{"00C6}

635 \DeclareTextComposite{\c}{\ant@encoding}{C}{"00C7}

636 \DeclareTextComposite{\‘}{\ant@encoding}{E}{"00C8}

637 \DeclareTextComposite{\’}{\ant@encoding}{E}{"00C9}

638 \DeclareTextComposite{\^}{\ant@encoding}{E}{"00CA}

29

639 \DeclareTextComposite{\"}{\ant@encoding}{E}{"00CB}

640 \DeclareTextComposite{\‘}{\ant@encoding}{I}{"00CC}

641 \DeclareTextComposite{\’}{\ant@encoding}{I}{"00CD}

642 \DeclareTextComposite{\^}{\ant@encoding}{I}{"00CE}

643 \DeclareTextComposite{\"}{\ant@encoding}{I}{"00CF}

644 \DeclareTextSymbol{\DH}{\ant@encoding}{"00D0}

645 \DeclareTextComposite{\~}{\ant@encoding}{N}{"00D1}

646 \DeclareTextComposite{\‘}{\ant@encoding}{O}{"00D2}

647 \DeclareTextComposite{\’}{\ant@encoding}{O}{"00D3}

648 \DeclareTextComposite{\^}{\ant@encoding}{O}{"00D4}

649 \DeclareTextComposite{\~}{\ant@encoding}{O}{"00D5}

650 \DeclareTextComposite{\"}{\ant@encoding}{O}{"00D6}

651 \DeclareTextSymbol{\texttimes}{\ant@encoding}{"00D7}

652 \DeclareTextSymbol{\O}{\ant@encoding}{"00D8}

653 \DeclareTextComposite{\‘}{\ant@encoding}{U}{"00D9}

654 \DeclareTextComposite{\’}{\ant@encoding}{U}{"00DA}

655 \DeclareTextComposite{\^}{\ant@encoding}{U}{"00DB}

656 \DeclareTextComposite{\"}{\ant@encoding}{U}{"00DC}

657 \DeclareTextComposite{\’}{\ant@encoding}{Y}{"00DD}

658 \DeclareTextSymbol{\TH}{\ant@encoding}{"00DE}

659 \DeclareTextCommand{\SS}{\ant@encoding}{SS}

660 \DeclareTextSymbol{\ss}{\ant@encoding}{"00DF}

661 \DeclareTextComposite{\‘}{\ant@encoding}{a}{"00E0}

662 \DeclareTextComposite{\’}{\ant@encoding}{a}{"00E1}

663 \DeclareTextComposite{\^}{\ant@encoding}{a}{"00E2}

664 \DeclareTextComposite{\~}{\ant@encoding}{a}{"00E3}

665 \DeclareTextComposite{\"}{\ant@encoding}{a}{"00E4}

666 \DeclareTextComposite{\r}{\ant@encoding}{a}{"00E5}

667 \DeclareTextComposite{\c}{\ant@encoding}{c}{"00E7}

668 \DeclareTextSymbol{\ae}{\ant@encoding}{"00E6}

669 \DeclareTextComposite{\‘}{\ant@encoding}{e}{"00E8}

670 \DeclareTextComposite{\’}{\ant@encoding}{e}{"00E9}

671 \DeclareTextComposite{\^}{\ant@encoding}{e}{"00EA}

672 \DeclareTextComposite{\"}{\ant@encoding}{e}{"00EB}

673 \DeclareTextComposite{\‘}{\ant@encoding}{i}{"00EC}

674 \DeclareTextComposite{\‘}{\ant@encoding}{\i}{"00EC}

675 \DeclareTextComposite{\’}{\ant@encoding}{i}{"00ED}

676 \DeclareTextComposite{\’}{\ant@encoding}{\i}{"00ED}

677 \DeclareTextComposite{\^}{\ant@encoding}{i}{"00EE}

678 \DeclareTextComposite{\^}{\ant@encoding}{\i}{"00EE}

679 \DeclareTextComposite{\"}{\ant@encoding}{i}{"00EF}

680 \DeclareTextComposite{\"}{\ant@encoding}{\i}{"00EF}

681 \DeclareTextSymbol{\dh}{\ant@encoding}{"00F0}

682 \DeclareTextComposite{\~}{\ant@encoding}{n}{"00F1}

683 \DeclareTextComposite{\‘}{\ant@encoding}{o}{"00F2}

684 \DeclareTextComposite{\’}{\ant@encoding}{o}{"00F3}

685 \DeclareTextComposite{\^}{\ant@encoding}{o}{"00F4}

686 \DeclareTextComposite{\~}{\ant@encoding}{o}{"00F5}

687 \DeclareTextComposite{\"}{\ant@encoding}{o}{"00F6}

688 \DeclareTextSymbol{\textdiv}{\ant@encoding}{"00F7}

689 \DeclareTextSymbol{\o}{\ant@encoding}{"00F8}

690 \DeclareTextComposite{\‘}{\ant@encoding}{u}{"00F9}

691 \DeclareTextComposite{\’}{\ant@encoding}{u}{"00FA}

692 \DeclareTextComposite{\^}{\ant@encoding}{u}{"00FB}

30

693 \DeclareTextComposite{\"}{\ant@encoding}{u}{"00FC}

694 \DeclareTextComposite{\’}{\ant@encoding}{y}{"00FD}

695 \DeclareTextSymbol{\th}{\ant@encoding}{"00FE}

696 \DeclareTextComposite{\"}{\ant@encoding}{y}{"00FF}

697 〈/UT1 | T1〉

10.7 Latin Extended A

698 〈∗UT1 | T1〉
699 〈!T1〉\DeclareTextComposite{\=}{\ant@encoding}{A}{"0100}
700 〈!T1〉\DeclareTextComposite{\=}{\ant@encoding}{a}{"0101}
701 \DeclareTextComposite{\u}{\ant@encoding}{A}{"0102}

702 \DeclareTextComposite{\u}{\ant@encoding}{a}{"0103}

703 \DeclareTextComposite{\k}{\ant@encoding}{A}{"0104}

704 \DeclareTextComposite{\k}{\ant@encoding}{a}{"0105}

705 \DeclareTextComposite{\’}{\ant@encoding}{C}{"0106}

706 \DeclareTextComposite{\’}{\ant@encoding}{c}{"0107}

707 \DeclareTextComposite{\v}{\ant@encoding}{C}{"0108}

708 \DeclareTextComposite{\v}{\ant@encoding}{c}{"0109}

709 \DeclareTextComposite{\v}{\ant@encoding}{D}{"010E}

710 \DeclareTextComposite{\v}{\ant@encoding}{d}{"010F}

711 \DeclareTextSymbol{\DJ}{\ant@encoding}{"0110}

712 \DeclareTextSymbol{\dj}{\ant@encoding}{"0111}

713 〈!T1〉\DeclareTextComposite{\=}{\ant@encoding}{E}{"0112}
714 〈!T1〉\DeclareTextComposite{\=}{\ant@encoding}{e}{"0113}
715 〈!T1〉\DeclareTextComposite{\u}{\ant@encoding}{E}{"0114}
716 〈!T1〉\DeclareTextComposite{\u}{\ant@encoding}{e}{"0115}
717 〈!T1〉\DeclareTextComposite{\.}{\ant@encoding}{E}{"0116}
718 〈!T1〉\DeclareTextComposite{\.}{\ant@encoding}{e}{"0117}
719 \DeclareTextComposite{\k}{\ant@encoding}{E}{"0118}

720 \DeclareTextComposite{\k}{\ant@encoding}{e}{"0119}

721 \DeclareTextComposite{\v}{\ant@encoding}{E}{"011A}

722 \DeclareTextComposite{\v}{\ant@encoding}{e}{"011B}

723 〈!T1〉\DeclareTextComposite{\V}{\ant@encoding}{G}{"010C}
724 〈!T1〉\DeclareTextComposite{\v}{\ant@encoding}{g}{"010D}
725 \DeclareTextComposite{\u}{\ant@encoding}{G}{"011E}

726 \DeclareTextComposite{\u}{\ant@encoding}{g}{"011F}

727 〈∗!T1〉
728 \DeclareTextComposite{\.}{\ant@encoding}{G}{"0120}

729 \DeclareTextComposite{\.}{\ant@encoding}{g}{"0121}

730 \DeclareTextComposite{\c}{\ant@encoding}{G}{"0122}

731 \DeclareTextComposite{\c}{\ant@encoding}{g}{"0123}

732 \DeclareTextComposite{\^}{\ant@encoding}{H}{"0124}

733 \DeclareTextComposite{\^}{\ant@encoding}{h}{"0125}

734 \DeclareTextComposite{\~}{\ant@encoding}{I}{"0128}

735 \DeclareTextComposite{\~}{\ant@encoding}{i}{"0129}

736 \DeclareTextComposite{\=}{\ant@encoding}{I}{"012A}

737 \DeclareTextComposite{\=}{\ant@encoding}{i}{"012B}

738 \DeclareTextComposite{\u}{\ant@encoding}{I}{"012C}

739 \DeclareTextComposite{\u}{\ant@encoding}{i}{"012D}

740 \DeclareTextComposite{\k}{\ant@encoding}{I}{"012E}

741 \DeclareTextComposite{\k}{\ant@encoding}{i}{"012F}

742 〈/!T1〉
743 \DeclareTextComposite{\.}{\ant@encoding}{I}{"0130}

744 〈/UT1 | T1〉

31

745 〈!LGR〉\DeclareTextSymbol{\i}{\ant@encoding}{"0131}
746 〈∗UT1 | T1〉
747 \DeclareTextSymbol{\IJ}{\ant@encoding}{"0132}

748 \DeclareTextSymbol{\ij}{\ant@encoding}{"0133}

749 〈∗!T1〉
750 \DeclareTextComposite{\^}{\ant@encoding}{J}{"0134}

751 \DeclareTextComposite{\^}{\ant@encoding}{j}{"0135}

752 \DeclareTextComposite{\c}{\ant@encoding}{K}{"0136}

753 \DeclareTextComposite{\c}{\ant@encoding}{k}{"0137}

754 〈/!T1〉
755 \DeclareTextComposite{\’}{\ant@encoding}{L}{"0139}

756 \DeclareTextComposite{\’}{\ant@encoding}{l}{"013A}

757 〈!T1〉\DeclareTextComposite{\c}{\ant@encoding}{L}{"013B}
758 〈!T1〉\DeclareTextComposite{\c}{\ant@encoding}{l}{"013C}
759 \DeclareTextComposite{\v}{\ant@encoding}{L}{"013D}

760 \DeclareTextComposite{\v}{\ant@encoding}{l}{"013E}

761 \DeclareTextSymbol{\L}{\ant@encoding}{"0141}

762 \DeclareTextSymbol{\l}{\ant@encoding}{"0142}

763 \DeclareTextComposite{\’}{\ant@encoding}{N}{"0143}

764 \DeclareTextComposite{\’}{\ant@encoding}{n}{"0144}

765 〈!T1〉\DeclareTextComposite{\c}{\ant@encoding}{N}{"0145}
766 〈!T1〉\DeclareTextComposite{\c}{\ant@encoding}{n}{"0146}
767 \DeclareTextComposite{\v}{\ant@encoding}{N}{"0147}

768 \DeclareTextComposite{\v}{\ant@encoding}{n}{"0148}

769 \DeclareTextSymbol{\NG}{\ant@encoding}{"014A}

770 \DeclareTextSymbol{\ng}{\ant@encoding}{"014B}

771 〈∗!T1〉
772 \DeclareTextComposite{\=}{\ant@encoding}{O}{"014C}

773 \DeclareTextComposite{\=}{\ant@encoding}{o}{"014D}

774 \DeclareTextComposite{\u}{\ant@encoding}{O}{"014E}

775 \DeclareTextComposite{\u}{\ant@encoding}{o}{"014F}

776 〈/!T1〉
777 \DeclareTextComposite{\H}{\ant@encoding}{O}{"0150}

778 \DeclareTextComposite{\H}{\ant@encoding}{o}{"0151}

779 \DeclareTextSymbol{\OE}{\ant@encoding}{"0152}

780 \DeclareTextSymbol{\oe}{\ant@encoding}{"0153}

781 \DeclareTextComposite{\’}{\ant@encoding}{R}{"0154}

782 \DeclareTextComposite{\’}{\ant@encoding}{r}{"0155}

783 〈!T1〉\DeclareTextComposite{\c}{\ant@encoding}{R}{"0156}
784 〈!T1〉\DeclareTextComposite{\c}{\ant@encoding}{r}{"0157}
785 \DeclareTextComposite{\v}{\ant@encoding}{R}{"0158}

786 \DeclareTextComposite{\v}{\ant@encoding}{r}{"0159}

787 \DeclareTextComposite{\’}{\ant@encoding}{S}{"015A}

788 \DeclareTextComposite{\’}{\ant@encoding}{s}{"015B}

789 〈!T1〉\DeclareTextComposite{\^}{\ant@encoding}{S}{"015C}
790 〈!T1〉\DeclareTextComposite{\^}{\ant@encoding}{s}{"015D}
791 \DeclareTextComposite{\c}{\ant@encoding}{S}{"015E}

792 \DeclareTextComposite{\c}{\ant@encoding}{s}{"015F}

793 \DeclareTextComposite{\v}{\ant@encoding}{S}{"0160}

794 \DeclareTextComposite{\v}{\ant@encoding}{s}{"0161}

795 \DeclareTextComposite{\c}{\ant@encoding}{T}{"0162}

796 \DeclareTextComposite{\c}{\ant@encoding}{t}{"0163}

797 \DeclareTextComposite{\v}{\ant@encoding}{T}{"0164}

798 \DeclareTextComposite{\v}{\ant@encoding}{t}{"0165}

32

799 〈∗!T1〉
800 \DeclareTextComposite{\~}{\ant@encoding}{U}{"0168}

801 \DeclareTextComposite{\~}{\ant@encoding}{u}{"0169}

802 \DeclareTextComposite{\=}{\ant@encoding}{U}{"016A}

803 \DeclareTextComposite{\=}{\ant@encoding}{u}{"016B}

804 \DeclareTextComposite{\u}{\ant@encoding}{U}{"016C}

805 \DeclareTextComposite{\u}{\ant@encoding}{u}{"016D}

806 \DeclareTextComposite{\r}{\ant@encoding}{U}{"016E}

807 \DeclareTextComposite{\r}{\ant@encoding}{u}{"016F}

808 〈/!T1〉
809 \DeclareTextComposite{\H}{\ant@encoding}{U}{"0170}

810 \DeclareTextComposite{\H}{\ant@encoding}{u}{"0171}

811 〈∗!T1〉
812 \DeclareTextComposite{\k}{\ant@encoding}{U}{"0172}

813 \DeclareTextComposite{\k}{\ant@encoding}{u}{"0173}

814 \DeclareTextComposite{\^}{\ant@encoding}{W}{"0174}

815 \DeclareTextComposite{\^}{\ant@encoding}{w}{"0175}

816 \DeclareTextComposite{\^}{\ant@encoding}{Y}{"0176}

817 \DeclareTextComposite{\^}{\ant@encoding}{y}{"0177}

818 〈/!T1〉
819 \DeclareTextComposite{\"}{\ant@encoding}{Y}{"0178}

820 \DeclareTextComposite{\’}{\ant@encoding}{Z}{"0179}

821 \DeclareTextComposite{\’}{\ant@encoding}{z}{"017A}

822 \DeclareTextComposite{\.}{\ant@encoding}{Z}{"017B}

823 \DeclareTextComposite{\.}{\ant@encoding}{z}{"017C}

824 \DeclareTextComposite{\v}{\ant@encoding}{Z}{"017D}

825 \DeclareTextComposite{\v}{\ant@encoding}{z}{"017E}

826 〈/UT1 | T1〉

10.8 Latin Extended B

827 〈∗UT1〉
828 \DeclareTextSymbol{\textflorin}{\ant@encoding}{"0192}

829 \DeclareTextComposite{\=}{\ant@encoding}{Y}{"0232}

830 \DeclareTextComposite{\=}{\ant@encoding}{y}{"0233}

831 〈/UT1〉

10.9 Spacing modifier letters

This area is used once again to map some text commands for ASCII-styled accents,
originally defined in the TS1 encoding.

832 〈∗UT1〉
833 \DeclareTextSymbol{\textasciicaron}{\ant@encoding}{"02C7}

834 \DeclareTextSymbol{\textasciibreve}{\ant@encoding}{"02D8}

835 \DeclareTextSymbol{\textacutedbl}{\ant@encoding}{"02DD}

836 〈/UT1〉

10.10 Thai

837 〈∗UT1〉
838 \DeclareTextSymbol{\textbaht}{\ant@encoding}{"0E3F}

839 〈/UT1〉

10.11 General punctuation

33

840 \DeclareTextSymbol{\textcompwordmark}{\ant@encoding}{"200C}

841 〈UT1〉\DeclareTextSymbol{\textbardbl}{\ant@encoding}{"2016}
842 〈UT1〉\DeclareTextSymbol{\textdagger}{\ant@encoding}{"2020}
843 〈UT1〉\DeclareTextSymbol{\textdaggerdbl}{\ant@encoding}{"2021}
844 〈UT1〉\DeclareTextSymbol{\textbullet}{\ant@encoding}{"2022}
845 〈UT1 | LGR〉\DeclareTextSymbol{\textperthousand}{\ant@encoding}{"2030}
846 〈UT1〉\DeclareTextSymbol{\textpertenthousand}{\ant@encoding}{"2031}
847 〈UT1 | T1〉\DeclareTextSymbol{\guilsinglleft}{\ant@encoding}{"2039}
848 〈UT1 | T1〉\DeclareTextSymbol{\guilsinglright}{\ant@encoding}{"203A}
849 \DeclareTextSymbol{\textendash}{\ant@encoding}{"2013}

850 \DeclareTextSymbol{\textemdash}{\ant@encoding}{"2014}

851 \DeclareTextSymbol{\textquoteleft}{\ant@encoding}{"2018}

852 \DeclareTextSymbol{\textquoteright}{\ant@encoding}{"2019}

853 〈UT1 | T1〉\DeclareTextSymbol{\quotesinglbase}{\ant@encoding}{"201A}
854 \DeclareTextSymbol{\textquotedblleft}{\ant@encoding}{"201C}

855 \DeclareTextSymbol{\textquotedblright}{\ant@encoding}{"201D}

856 〈!LGR〉\DeclareTextSymbol{\quotedblbase}{\ant@encoding}{"201E}
857 〈UT1〉\DeclareTextSymbol{\textreferencemark}{\ant@encoding}{"203B}
858 〈UT1〉\DeclareTextSymbol{\textinterrobang}{\ant@encoding}{"203D}
859 〈UT1〉\DeclareTextSymbol{\textlquill}{\ant@encoding}{"2045}
860 〈UT1〉\DeclareTextSymbol{\textrquill}{\ant@encoding}{"2046}

10.12 Currency symbols

861 〈∗UT1〉
862 \DeclareTextSymbol{\textcolonmonetary}{\ant@encoding}{"20A1}

863 \DeclareTextSymbol{\textlira}{\ant@encoding}{"20A4}

864 \DeclareTextSymbol{\textnaira}{\ant@encoding}{"20A6}

865 \DeclareTextSymbol{\textpeso}{\ant@encoding}{"20A7}

866 \DeclareTextSymbol{\textwon}{\ant@encoding}{"20A9}

867 \DeclareTextSymbol{\textdong}{\ant@encoding}{"20AB}

868 〈/UT1〉
869 〈UT1 | LGR〉\DeclareTextSymbol{\texteuro}{\ant@encoding}{"20AC}
870 〈UT1〉\DeclareTextSymbol{\textguarani}{\ant@encoding}{"20B2}

10.13 Combining diacritical marks for symbols

871 〈UT1〉\DeclareTextSymbol{\textbigcircle}{\ant@encoding}{"20DD}
872 \DeclareTextCommand{\textcircled}{\ant@encoding}[1]{{%

873 \ooalign{%

874 \hfil \raise .07ex\hbox {\upshape#1}\hfil \crcr

875 \char 79 % ’117 = "4F

876 }%

877 }}

10.14 Letterlike symbols

878 〈∗UT1〉
879 \DeclareTextSymbol{\textcelsius}{\ant@encoding}{"2103}

880 〈/UT1〉
881 〈UT1 | T2A〉\DeclareTextSymbol{\textnumero}{\ant@encoding}{"2116}
882 〈∗UT1〉
883 \DeclareTextSymbol{\textcircledP}{\ant@encoding}{"2117}

884 \DeclareTextSymbol{\textrecipe}{\ant@encoding}{"211E}

885 \DeclareTextSymbol{\textservicemark}{\ant@encoding}{"2120}

886 \DeclareTextSymbol{\texttrademark}{\ant@encoding}{"2122}

34

887 \DeclareTextSymbol{\textohm}{\ant@encoding}{"2126}

888 \DeclareTextSymbol{\textmho}{\ant@encoding}{"2127}

889 \DeclareTextSymbol{\textestimated}{\ant@encoding}{"212E}

890 〈/UT1〉

10.15 Arrows

891 〈∗UT1〉
892 \DeclareTextSymbol{\textleftarrow}{\ant@encoding}{"2190}

893 \DeclareTextSymbol{\textrightarrow}{\ant@encoding}{"2191}

894 \DeclareTextSymbol{\textuparrow}{\ant@encoding}{"2192}

895 \DeclareTextSymbol{\textdownarrow}{\ant@encoding}{"2193}

896 〈/UT1〉

10.16 Mathematical Operators

897 〈∗UT1〉
898 \DeclareTextSymbol{\textminus}{\ant@encoding}{"2212}

899 \DeclareTextSymbol{\textsurd}{\ant@encoding}{"221A}

900 〈/UT1〉
901 〈UT1 | T2A〉\DeclareTextSymbol{\textlangle}{\ant@encoding}{"2329}
902 〈UT1 | T2A〉\DeclareTextSymbol{\textrangle}{\ant@encoding}{"232A}

10.17 Control Pictures

903 〈UT1 | T1 | T2A〉\DeclareTextSymbol{\textvisiblespace}{\ant@encoding}{"2423}

10.18 Geometric Shapes

904 〈∗UT1〉
905 \DeclareTextSymbol{\textopenbullet}{\ant@encoding}{"25E6}

906 〈/UT1〉

10.19 Miscellaneous Symbols

907 〈∗UT1〉
908 \DeclareTextSymbol{\textmusicalnote}{\ant@encoding}{"266A}

909 〈/UT1〉

10.20 CJK Symbols and Punctuation

910 〈∗UT1〉
911 \DeclareTextSymbol{\textlbrackdbl}{\ant@encoding}{"301A}

912 \DeclareTextSymbol{\textrbrackdbl}{\ant@encoding}{"301B}

913 〈/UT1〉

10.21 Private use area

PUA characters are mapped according to the Adobe Glyph List. Don’t use the
following text commands, if your font really doesn’t include the corresponding
characters.

914 〈UT1 | T1 | T2A〉\DeclareTextSymbol{\j}{\ant@encoding}{"F6BE}
915 〈∗UT1〉
916 \DeclareTextSymbol{\textgravedbl}{\ant@encoding}{"F6D6}

917 \DeclareTextSymbol{\textdollaroldstyle}{\ant@encoding}{"F724}

918 \DeclareTextSymbol{\textzerooldstyle}{\ant@encoding}{"F730}

919 \DeclareTextSymbol{\textoneoldstyle}{\ant@encoding}{"F731}

920 \DeclareTextSymbol{\texttwooldstyle}{\ant@encoding}{"F732}

35

921 \DeclareTextSymbol{\textthreeoldstyle}{\ant@encoding}{"F733}

922 \DeclareTextSymbol{\textfouroldstyle}{\ant@encoding}{"F734}

923 \DeclareTextSymbol{\textfiveoldstyle}{\ant@encoding}{"F735}

924 \DeclareTextSymbol{\textsixoldstyle}{\ant@encoding}{"F736}

925 \DeclareTextSymbol{\textsevenoldstyle}{\ant@encoding}{"F737}

926 \DeclareTextSymbol{\texteightoldstyle}{\ant@encoding}{"F738}

927 \DeclareTextSymbol{\textnineoldstyle}{\ant@encoding}{"F739}

928 \DeclareTextSymbol{\textcentoldstyle}{\ant@encoding}{"F7A2}

929 〈/UT1〉
Again, capital accents are mapped according to older Adobe specifications and

their real placement in Adobe’s fonts.

930 〈∗UT1〉
931 \DeclareTextCommand{\capitalogonek}{\ant@encoding}[1]

932 {{\ooalign{\null#1\crcr\hidewidth\noocpchar{"EFF1}\hidewidth}}}

933 \DeclareTextCommand{\capitalcedilla}{\ant@encoding}[1]

934 {{\ooalign{\null#1\crcr\hidewidth\noocpchar{"EFF2}\hidewidth}}}

935 \DeclareTextAccent{\capitalgrave}{\ant@encoding}{"F6CE}

936 \DeclareTextAccent{\capitalacute}{\ant@encoding}{"F6C9}

937 \DeclareTextAccent{\capitalcircumflex}{\ant@encoding}{"EFF7}

938 \DeclareTextAccent{\capitaltilde}{\ant@encoding}{"EFF5}

939 \DeclareTextAccent{\capitaldieresis}{\ant@encoding}{"F6CB}

940 \DeclareTextAccent{\capitalhungarumlaut}{\ant@encoding}{"F6CF}

941 \DeclareTextAccent{\capitalring}{\ant@encoding}{"EFF3}

942 \DeclareTextAccent{\capitalcaron}{\ant@encoding}{"F6CA}

943 \DeclareTextAccent{\capitalbreve}{\ant@encoding}{"EFEE}

944 \DeclareTextAccent{\capitalmacron}{\ant@encoding}{"F6D0}

945 \DeclareTextAccent{\capitaldotaccent}{\ant@encoding}{"EFED}

946 〈/UT1〉

10.22 Final operations

Finally undefine \ant@encoding.

947 \let\ant@encoding\@undefined

¡/UT1—T1—T2A—LGR¿

36

